Задание 17.2

17.2. Решите уравнение:

1)2sin 2x 3sin x + 1 = 0

;

2)2cos 22x cos 2x 1 = 0

;

3)4tg 2x tg x 3 = 0

;

4)3cos 2x 4 + 5cos x 4 2 = 0

.

Answers

1.
2sin 2x 3sin x + 1 = 0

Сделаем замену sin x = t:

2t2 3t + 1 = 0

D = 9 8 = 1

t1 = 3 + 1 4 = 1,t2 = 3 1 4 = 2 4 = 1 2

[ t = 4 t = 1 2 [sin x = 1 sin x = 1 2 [x = (1)n arcsin 1 + πn x = (1)n arcsin 1 2 + πn [x = π 2 + 2πn x = (1)n π 6 + πn

2.
2cos 22x cos 2x 1 = 0

Сделаем замену cos 2x = t:

2t2 t 1 = 0

D = 1 + 8 = 9

t1 = 1 + 3 4 = 1,t2 = 1 3 4 = 1 2

[ t = 1 t = 1 2 [cos 2x = 1 cos 2x = 1 2 [2x = ±arccos 1 + 2πn 2x = ±arccos (1 2 ) + 2πn [2x = 2πn 2x = ±2 3π + 2πn [x = πn,n x = ±π 3 + πn,n

3.
4tg 2x tg x 3 = 0

Сделаем замену tg x = t.

4t2 t 3 = 0

D = b2 4ac = 1 + 48 = 49 = 72

t1 = 1 + 7 8 = 1;t2 = 1 7 8 = 6 8 = 3 4

[ tg x = 1 tg x = 3 4 [x = arctg 1 + πn x = arctg (3 4 ) + πn [x = π 4 + πn,n x = arctg 3 4 + πn,n

4.
3cos 2x 4 + 5cos x 4 2 = 0

Сделаем замену cos x 4 = t:

3t2 + 5t 2 = 0

D = 25 + 24 = 72

t1 = 5 + 7 6 = 2 6 = 1 3;t2 = 5 7 6 = 12 6 = 2

Т.к. cos x [1;1], то cos x 2.

cos x = 1 3

x 4 = ±arccos 1 3 + 2πn

x = ±4arccos 1 3 + 8πn,n

User profile picture
2021-12-14 05:53
Comments