Задание 24.2

24.2. Найдите наибольшее и наименьшее значения функции f на указанном промежутке:

1.
f(x) = 1 3x3 4x,[0;3];
2.
f(x) = x 1 x3 x2,[2;0];
3.
f(x) = 2x4 8x,[2;1];
4.
f(x) = x4 4 8x2,[1;2].

Answers

User profile picture
2021-12-09 09:43
Comments
1.
f(x) = 1 3x3 4x,[0;3]

f(x) = x2 4

x2 4 = 0

x2 = 4

x1 = 2,x2 = 2

2 [0;3],2[0;3]

f(0) = 1 3 0 4 0 = 0

f(2) = 1 3 23 4 2 = 8 (1 3 1) = 8 (2 3 ) = 51 3

f(3) = 1 3 33 4 3 = 32 12 = 3

max [0;3]f(x) = 0

min [0;3]f(x) = 51 3

2.
f(x) = x 1 x3 x2,[2;0]

f(x) = 1 3x2 2x

3x2 2x + 1 = 0

D = 4 + 12 = 16

x1 = 6 6 = 1

x2 = 2 6 = 1 3

1 3[2;0]

f(2) = 2 1 (2)3 (2)2 = 2 1 + 8 4 = 2

f(0) = 0 1 0 0 = 1

max [2;0]f(x) = 1

min 2,0]f(x) = 2

3.
f(x) = 2x4 8x,[2;1]

f(x) = 8x3 8

8x3 8 = 0

8x3 = 8

x3 = 1

x1 = 1

1 [2;1]

f(1) = 2 8 = 6

f(2) = 2 (2)4 8 (2) = 32 + 16 = 48

max [2;1]f(x) = 48

min [2;1]f(x) = 6

4.
f(x) = x4 4 8x2,[1;2]

f(x) = x3 16x

x3 16x = 0

x1 = 0x2 = 16

x2 = 4,x3 = 4

4,4[1;2]

f(0) = 0

f(1) = 1 4 8 = 73 4

f(2) = 16 4 8 4 = 4 32 = 28

max [1;2]f(x) = 0

min [1;2]f(x) = 28

User profile picture
2021-12-09 09:59
Comments