Exercise 1.1.8

Use Cardan’s formulas to solve y 3 + 3 ωy + 1 = 0 .

Answers

Proof. The equation y 3 + 3 ωy + 1 = 0 , with the substitution

t = ωy , y = ω 2 t ,

becomes

t 3 + 3 t + 1 = 0 .

With p 3 = 1 , q 2 = 1 2 , the Cardan’s formulas give

z 1 = q 2 + ( q 2 ) 2 + ( p 3 ) 3 3 z 1 = 1 + 5 2 3 z 2 = 1 5 2 3

The roots of t 3 + 3 t + 1 are z 1 + z 2 , ω z 1 + ω 2 z 2 , ω 2 z 1 + ω z 2 .

Thus the roots of y 3 + 3 ωy + 1 are ω 2 z 1 + ω 2 z 2 , z 1 + ω z 2 , ω z 1 + z 2 .

The solutions of y 3 + 3 ωy + 1 = 0 are

y 1 = ω 2 1 + 5 2 3 + ω 2 1 5 2 3 , y 2 = 1 + 5 2 3 + ω 1 5 2 3 , y 3 = ω 1 + 5 2 3 + 1 5 2 3 .
User profile picture
2022-07-19 00:00
Comments