Exercise 1.3.14

In Section 1.1, we discussed the equation x 3 + 2 x 2 + 10 x = 20 considered by Fibonacci.

(a)
Show that this equation has precisely one real root. This is the root Fibonacci approximated so well.
(b)
Use Cardan’s formulas and a calculator to work out numerically the three roots of this polynomial.

Answers

Proof.

(a)
Let f ( x ) = x 3 + 2 x 2 + 10 x .

For all x , f ( x ) = 3 x 2 + 4 x + 10 = 2 x 2 + ( x + 2 ) 2 + 6 > 0 , thus f is strictly increasing, f is continuous, and lim y + f ( y ) = + , lim y f ( y ) = . By the intermediate values theorem, f : is a bijection. Therefore there exists x such that f ( x ) = 20 , so there exists a unique real root of

g ( x ) = x 3 + 2 x 2 + 10 x 20 .

As g ( 0 ) = 20 and lim x + g ( x ) = + , this root is positive.

(b)
To remove the coefficient of x 2 , let h ( y ) = g ( y 2 3 ) . h ( y ) = g ( y 2 3 ) = ( y 2 3 ) 3 + 2 ( y 2 3 ) 2 + 10 ( y 2 3 ) 20 = y 3 2 y 2 + 4 3 y 8 27 + 2 y 2 8 3 y + 8 9 + 10 y 20 3 20 = y 3 + 26 3 y 704 27 .

Define p , q by

p 3 = 26 9 , q 2 = 352 27

( q 2 ) 2 + ( p 3 ) 3 = 123904 3 6 + 17576 3 6 = 141480 3 6 = 5240 27

Consequently, the real solution of the equation is given by

x 1 = 2 3 + 352 27 + 5240 27 3 + 352 27 5240 27 3 = 1 3 ( 2 + 352 + 6 3930 3 + 352 6 3930 3 ) = 1 3 ( 2 + 6 3930 + 352 3 6 3930 352 3 ) .

With a calculator, an approximation at 1 0 10 of the real root x 1 is x 1 1.3688081078 .

The two other roots are given by

x 2 = 1 3 ( 2 + ω 6 3930 + 352 3 ω 2 6 3930 352 3 ) 1.684404055 i 3.431331350 , x 3 = 1 3 ( 2 + ω 2 6 3930 + 352 3 ω 6 3930 352 3 ) = x 2 ¯ .

To verify the Fibonacci’s result in 1225, we compute a decomposition of x 1 with basis 60 with the following Maple program (or Sage program):

 x1:=1/3*(-2+(6*sqrt(3930)+352)^(1/3)-(6*sqrt(3930)-352)^(1/3)):
 l:=[1]:Digits:=20:
 u:=evalf(x1):
 u:=u-1:
 for i to 6 do a:=floor(60*u):u:=60*(u-a/60.0):l:=l,a: od:
 [l];

           [[1], 22, 7, 42, 33, 4, 38]

which gives

x 1 = 1 + 22 60 + 7 6 0 2 + 42 6 0 3 + 33 6 0 4 + 4 6 0 5 + 38 6 0 6 +

Only the last fraction is slightly different in Fibonacci’s result 40 6 0 6 , the difference being 2 6 0 6 4.1 0 11 .

Idem with Sage :

x1 = 1/3*((6*sqrt(3930) + 352)^(1/3) - (6*sqrt(3930) - 352)^(1/3) - 2)
R = RealField(200)
u = R(x1)
n = floor(u)
l = [[n]]; u = u-n
for i in range(6):
    a = floor(60*u)
    u = 60*(u-a/60)
    l.append(a)
print l
[[1], 22, 7, 42, 33, 4, 38]

User profile picture
2022-07-19 00:00
Comments