Exercise 1.3.15

Use a calculator and Theorem 1.3.3 to compute the roots of the cubic equation y 3 7 y + 3 = 0 to eight decimal places of accuracy.

Answers

Proof. We use the Viète’s method to

y 3 7 y + 3 : p = 7 , q = 3 .

By theorem 1.3.3, the roots are given by

y k = 2 p q cos ( 𝜃 + 2 3 ) = 2 7 3 cos ( 𝜃 + 2 3 ) , k = 0 , 1 , 2 ,

where

𝜃 = 1 3 arccos ( 3 3 q 2 p p ) = 1 3 arccos ( 9 3 14 7 ) .

x = 9 3 14 7 0.420848788312271 ,

𝜃 = 1 3 arccos ( x ) 0.668392376195833 ,

y 0 2.39766154089 , y 1 2.83846925239 , y 2 0.44080771150 .
User profile picture
2022-07-19 00:00
Comments