Exercise 1.3.1

Let f ( x ) = y 3 + py + q = ( y y 1 ) ( y y 2 ) ( y y 3 ) , and set

Δ = ( y 1 y 2 ) 2 ( y 1 y 3 ) 2 ( y 2 y 3 ) 2 .

The goal of this exercise is to give a different proof of (1.22).

(a)
Use the product rule to show that f ( y 1 ) = ( y 1 y 2 ) ( y 1 y 3 ) , where f denotes the derivative of f . Also derive similar formulas for f ( y 2 ) and f ( y 3 ) .
(b)
Conclude that Δ = f ( y 1 ) f ( y 2 ) f ( y 3 ) . Be sure to explain where the minus sign comes from.
(c)
The quadratic f ( y ) = 3 y 2 + p factors as f ( y ) = 3 ( y α ) ( y β ) , where α = p 3 and β = p 3 (when p > 0 , we let p 3 = i p 3 ). Prove that Δ = 27 f ( α ) f ( β ) .
(d)
Use f ( y ) = y 3 + py + q and α = p 3 to show that f ( α ) = ( p 3 ) 3 + p p 3 + q = ( 2 3 ) p p 3 + q .

Similarly, show that f ( β ) = ( 2 3 ) p p 3 + q .

(e)
By combining parts (c) and (d), conclude that Δ = 4 p 3 27 q 2 .

Answers

Proof.

(a)
If y 1 , y 2 , y 3 are the complex roots of f ( y ) = y 3 + py + q [ y ] , then f ( y ) = y 3 + py + q = ( y y 1 ) ( y y 2 ) ( y y 3 ) , f ( y ) = ( y y 2 ) ( y y 3 ) + ( y y 1 ) ( y y 3 ) + ( y y 1 ) ( y y 2 ) ,

thus

f ( y i ) = j i ( y i y j ) , i = 1 , 2 , 3 ,

explicitly

f ( y 1 ) = ( y 1 y 2 ) ( y 1 y 3 ) , f ( y 2 ) = ( y 2 y 1 ) ( y 2 y 3 ) , f ( y 3 ) = ( y 3 y 1 ) ( y 3 y 2 ) .
(b)
Therefore f ( y 1 ) f ( y 2 ) f ( y 3 ) = [ ( y 1 y 2 ) 2 ] [ ( y 1 y 3 ) 2 ] [ ( y 2 y 3 ) 2 ] = Δ ,

so

Δ = f ( y 1 ) f ( y 2 ) f ( y 3 ) .

(c)
Since f ( y ) = 3 y 2 + p = 3 ( y α ) ( y β ) , where α = p 3 , β = p 3 , Δ = ( 3 y 1 2 + p ) ( 3 y 2 2 + p ) ( 3 y 3 2 + p ) = 27 ( y 1 α ) ( y 1 β ) ( y 2 α ) ( y 2 β ) ( y 3 α ) ( y 3 β ) = 27 f ( α ) f ( β ) .
(d)
Since f ( y ) = y 3 + py + q , f ( α ) = ( p 3 ) 3 + p ( p 3 ) + q = ( p 3 + p ) p 3 + q = ( 2 3 ) p p 3 + q ,

and similarly f ( β ) = f ( α ) = ( 2 3 ) p p 3 + q .

(e)
By combining parts (c) and (d), Δ = 27 f ( α ) f ( β ) = 27 { q 2 [ ( 2 3 ) p p 3 ] 2 } = 27 [ q 2 4 9 p 2 ( p 3 ) ] = 4 p 3 27 q 2 .

Conclusion : the discriminant of y 3 + py + q is

Δ = 4 p 3 27 q 2 .

User profile picture
2022-07-19 00:00
Comments