Exercise 1.3.6

Prove (1.24) : z 1 z 2 = p 3 z 2 = z 1 ¯ .

Answers

Proof. In the context of paragraph 1.3.A,

z 1 = 1 2 ( q + i Δ 27 ) 3 , z 2 = 1 2 ( q i Δ 27 ) 3 , p , q , Δ > 0 .

We know z 1 z 2 = p 3 .

Then z 1 3 = z 2 ¯ 3 , so z 1 = ω k z 2 ¯ , k = 0 , 1 , 2 . Therefore

p 3 = z 1 z 2 = ω k z 2 ¯ z 2 = ω k | z 2 | 2 .

As z 2 0 , ω k = p 3 1 | z 2 | 2 , which implies k = 0 , therefore z 2 = z 1 ¯ . □

User profile picture
2022-07-19 00:00
Comments