Exercise 1.3.7

Example 1.3.2 expressed the root y = 4 of y 3 15 y 4 in terms of Cardan’s formulas. Find the other two roots, and eplain how Cardan’s formulas give these roots.

Answers

Proof. Since

y 3 15 y 4 = ( y 4 ) ( y 2 + 4 y + 1 ) = ( y 4 ) [ ( y + 2 ) 2 3 ] = ( y 4 ) ( y + 2 3 ) ( y + 2 + 3 ) ,

the three roots of y 3 15 y 4 are 4 , 2 + 3 , 2 3 and are all real.

The Cardan’s formulas, with q 2 = 2 , p 3 = 5 , give

q 2 + ( q 2 ) 2 + ( p 3 ) 3 = 2 + 4 125 = 2 + 11 i .

Using the Bombelli’s note :

( 2 + i ) 3 = 2 + 11 i ,

so we can take for z 1 a cube root of 2 + 11 i given by

z 1 = 2 + i .

z 2 is the cube root of q 2 ( q 2 ) 2 + ( p 3 ) 3 = 2 i 11 verifying z 1 z 2 = p 3 = 5 .

By Ex. 1.3.6,

z 2 = z 1 ¯ = 2 i .

The roots of y 3 15 y 4 , using Cardan’s formulas, are

y 1 = z 1 + z 2 , y 2 = ω z 1 + ω 2 z 2 = 2 Re ( ω z 1 ) , y 3 = ω 2 z 1 + ω z 2 = 2 Re ( ω 2 z 1 ) ,

so

y 1 = 2 + i + 2 i = 4 , y 2 = Re [ ( 1 + i 3 ) ( 2 + i ) ] = 2 3 , y 3 = Re [ ( 1 i 3 ) ( 2 + i ) ] = 2 + 3 .
User profile picture
2022-07-19 00:00
Comments