Exercise 1.3.8

Derive the trigonometric identity cos ( 3 𝜃 ) = 4 cos 3 𝜃 3 cos 𝜃 using cos ( x + y ) = cos x cos y sin x sin y and cos 2 𝜃 + sin 2 𝜃 = 1 .

Answers

Proof.

e i 3 𝜃 = ( e i𝜃 ) 3 = ( cos 𝜃 + i sin 𝜃 ) 3 = cos 3 𝜃 3 cos 𝜃 sin 2 𝜃 + i ( . . . ) ,

so cos 3 𝜃 = Re ( e i 3 𝜃 ) = cos 3 𝜃 3 cos 𝜃 sin 2 𝜃 = cos 3 𝜃 3 cos 𝜃 ( 1 cos 2 𝜃 ) . So

cos 3 𝜃 = 4 cos 3 𝜃 3 cos 𝜃 .

User profile picture
2022-07-19 00:00
Comments