Exercise 10.3.10

In Example 10.3.10, prove that l meets l 1 and l 2 at the points Q 1 and Q 2 given in (10.13) and (10.14). Also draw the four lines whose slopes are the roots of (10.15).

Answers

PIC

Proof. The equation of the line l with slope m through P = ( 1 2 , 0 ) is

l : y = m ( x 1 2 ) .

The intersection point ( x 1 , y 1 ) of l with l 1 : y = x is given by the system

y 1 = x 1 , y 1 = m ( x 1 1 2 ) ,

which gives x 1 = m ( x 1 1 2 ) , 2 x 1 = 2 m x 1 m , so

Q 1 = ( x 1 , y 1 ) = ( m 2 m 2 , m 2 m 2 ) .

The intersection point ( x 2 , y 2 ) of l with l 2 : y = 1 2 x is given by the system

y 2 = 1 2 x 2 , y 2 = m ( x 2 1 2 ) ,

which gives 1 2 x 2 = m ( x 2 1 2 ) , so

Q 2 = ( x 2 , y 2 ) = ( m 2 m + 1 , m 2 ( 2 m + 1 ) ) .

Therefore

Q 1 Q 2 = 1 1 = ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 1 = ( m 2 m + 1 m 2 m 2 ) 2 + ( m 2 ( 2 m + 1 ) m 2 m 2 ) 2 1 = m 2 [ ( 2 4 m + 2 1 2 m 2 ) 2 + ( 1 4 m + 2 + 1 2 m 2 ) 2 ] 1 = m 2 ( 4 m + 2 ) 2 ( 2 m 2 ) 2 { [ ( 2 ( 2 m 2 ) ( 4 m + 2 ) ] 2 + [ 2 m 2 + 4 m + 2 ] 2 } ( 4 m + 2 ) 2 ( 2 m 2 ) 2 = m 2 ( 36 + 36 m 2 ) 16 ( 2 m + 1 ) 2 ( m 1 ) 2 = 36 m 2 ( 1 + m 2 ) 4 ( 2 m + 1 ) 2 ( m 1 ) 2 = 9 m 2 ( 1 + m 2 ) 16 m 4 16 m 3 12 m 2 + 8 m + 4 = 9 m 4 + 9 m 2 7 m 4 16 m 3 21 m 2 + 8 m + 4 = 0 .

We obtain the four slopes and the figure with the following SAGE instructions:

m = var(’m’)
p = 7*m^4-16*m^3-21*m^2+8*m+4
l = solve(p,m)
sols = [eq.right() for eq in l]
slopes = [sol.n() for sol in sols]; slopes

[-1.06517627861170, -0.312773186089791, 0.551041848035361, 3.11262190238042]


P = (1/2,0)
g = plot(x,x,xmin,xmax,color = ’red’)
g += plot(-1/2*x,x,xmin,xmax, color = ’red’)
for m in slopes:
    x1,x2 = m/(2*m-2),m/(2*m+1)
    Q1,Q2 = (x1,x1),(x2,-1/2*x2)
    g += line([Q1,P], color = ’yellow’)
    g += line([Q1,Q2], color = ’black’)

texte1 = text("$l_1$",(0.8,0.9), fontsize=15, rgbcolor=(0,0,0))
texte2 = text("$l_2$",(0.8,-0.5), fontsize=15, rgbcolor=(0,0,0))
g += texte1 + texte2
g.show(aspect_ratio=1)
g.save(’marquedRulers.pdf’,aspect_ratio=1,xmin=-1,xmax=1,ymin=-1,ymax=1)

User profile picture
2022-07-19 00:00
Comments