Exercise 12.1.15

Given the Lagrange resolvent α 1 , , α p 1 defined in (12.19),

α i = x 1 + ζ p i x 2 + ζ p 2 i x 3 + + ζ p ( p 1 ) i x p ,

the goal of this exercise is to prove that

x i = 1 p ( σ 1 + j = 1 p 1 ζ p j ( i 1 ) α j ) .

(a)
Write α j = l = 1 p ζ p j ( l 1 ) x l for 1 j p , so that α p = σ 1 . Then show that j = 1 p ζ p j ( i 1 ) α j = j , l = 1 p ( ζ p l i ) j x l .

(b)
Given an integer m , use Exercise 9 of section A.2 to prove that j = 1 p ( ζ p m ) j = { p , if  m 0 mod p , 0 , otherwise .

Answers

Proof.

(a)
By definition, α j = l = 1 p ζ p j ( l 1 ) x l , 1 j p .

Therefore

j = 1 p ζ p j ( i 1 ) α j = j = 1 p ζ p j ( i 1 ) l = 1 p ζ p j ( l 1 ) x l = l = 1 p [ j = 1 p ( ζ p l i ) j ] x l
(b)
If m 0 mod p , then ζ p m = 1 , so j = 1 p ( ζ p m ) j = p .
If m 0 mod p , then ζ p m 1 , so j = 1 p ( ζ p m ) j = ζ p m ( 1 + ζ p m + ζ p 2 m + + ζ p ( p 1 ) m ) = ζ p m 1 ( ζ p m ) p 1 ζ p m = 0 .

Thus,

j = 1 p ( ζ p m ) j = { p , if  m 0 mod p , 0 , otherwise .

(c)
With m = l i , part (b) gives j = 1 p ( ζ p l i ) j = { p , if  l i mod p , 0 , otherwise .

Therefore, by part (a),

j = 1 p ζ p j ( i 1 ) α j = l = 1 p [ j = 1 p ( ζ p l i ) j ] x l = p x i .

For all i = 1 , 2 , , p ,

x i = 1 p j = 1 p ζ p j ( i 1 ) α j = 1 p ( α p + j = 1 p 1 ζ p j ( i 1 ) α j )

Since α p = l = 1 p ζ p p ( l 1 ) x l = x 1 + + x p = σ 1 , we obtain

x i = 1 p ( σ 1 + j = 1 p 1 ζ p j ( i 1 ) α j ) .

User profile picture
2022-07-19 00:00
Comments