Exercise 12.1.18

Consider the quartic polynomial f = x 4 + 2 x 2 4 x + 2 [ x ] .

(a)
Show that the Ferrari resolvent of (12.10) is y 3 2 y 2 8 y .
(b)
Using the root y 1 = 0 of the cubic of part (a), show that (12.11) becomes x 2 = ± 2 ( x 1 )

and conclude that the four roots of f are

2 2 i ± 1 2 2 4 i 2  and  2 2 i ± 1 2 2 + 4 i 2 .

(c)
Use Euler’s solution (12.17) to find the roots of f . The formulas are surprisingly different. We will see in Chapter 13 that this quartic is especially simple. For most quartics, the formulas for the roots are much more complicated.

Answers

Proof.

(a)
The Ferrari resolvent 𝜃 ( y ) is given by Exercise 4: 𝜃 ( y ) = y 3 σ 2 y 2 + ( σ 1 σ 3 4 σ 4 ) y σ 1 2 σ 4 σ 3 2 + 4 σ 2 σ 4 .

As f = x 4 + 2 x 2 4 x + 2 [ x ] , σ 1 = 0 , σ 2 = 2 , σ 3 = 4 , σ 4 = 2 , so

𝜃 ( y ) = y 3 2 y 2 8 y .

(b)
We use the root y 1 = 0 of the Ferrari resolvent in (12.11) x 2 σ 1 2 x + y 1 2 = ± y 1 + σ 1 2 4 σ 2 ( x + σ 1 2 y 1 + σ 3 2 ( y 1 + σ 1 2 4 σ 2 ) ) ,

Here σ 1 = 0 , σ 2 = 2 , σ 3 = 4 , σ 4 = 2 , therefore y 1 + σ 1 2 4 σ 2 = 2 , so the roots of f are the solutions of

x 2 = ± 2 ( x 1 ) ,

(More directly, the equation is

x 4 = 2 x 2 + 4 x 2 = 2 ( x 2 2 x + 1 ) = 2 ( x 1 ) 2 = [ 2 ( x 1 ) ] 2 ,

so

x 2 = ± 2 ( x 1 ) . )

The roots of f are the roots of

x 2 i 2 x + i 2 or x 2 + i 2 x i 2 .

x 2 i 2 x + i 2 = ( x i 2 2 ) 2 + 1 2 + i 2 = ( x i 2 2 ) 2 1 4 ( 2 4 i 2 ) = ( x i 2 2 ) 2 ( 1 2 2 4 i 2 ) 2 = ( x i 2 2 1 2 2 4 i 2 ) ( x i 2 2 + 1 2 2 4 i 2 ) ,

and similarly

x 2 + i 2 x i 2 = ( x + i 2 2 1 2 2 + 4 i 2 ) ( x + i 2 2 + 1 2 2 + 4 i 2 ) .

so the roots of f are

i 2 2 + 1 2 2 4 i 2 , i 2 2 1 2 2 4 i 2 , i 2 2 + 1 2 2 + 4 i 2 , i 2 2 1 2 2 + 4 i 2

Moreover

( a + ib ) 2 = 2 4 i 2 a 2 + b 2 = | 2 4 i 2 | = 6 , a 2 b 2 = 2 , ab < 0 a + ib = ± ( 2 2 i )

so

2 4 i 2 = ± ( 2 2 i ) , 2 + 4 i 2 = ± ( 2 + 2 i ) .

The roots of f are x 1 , x 2 , x 3 = x 1 ¯ , x 4 = x 2 ¯ , where

x 1 = 2 2 + i ( 2 2 1 ) , x 2 = 2 2 + i ( 2 2 1 ) .

Note: x 1 , x 2 , x 3 , x 4 ( i , 2 ) , so ( x 1 , x 2 , x 3 , x 4 ) ( i , 2 ) .

2 = x 1 + x 1 ¯ = x 1 + x 3 ( x 1 , x 2 , x 3 , x 4 ) and i = 1 2 ( x 1 + x 2 ) ( x 1 , x 2 , x 3 , x 4 ) . Therefore the splitting field of f over is L = ( i , 2 ) .

The Galois group is Gal ( L ) = σ , τ , where σ ( 2 ) = 2 ) , σ ( i ) = i , and τ is the complex conjugation. As permutation group, Gal ( f ) = ( 1 2 ) ( 3 4 ) , ( 1 3 ) ( 2 4 ) 2 × 2 has order 4.

(c)
The Euler’s solution gives the roots α = 1 4 ( σ 1 + 𝜀 1 4 y 1 + σ 1 2 4 σ 2 + 𝜀 2 4 y 2 + σ 1 2 4 σ 2 + 𝜀 3 4 y 3 + σ 1 2 4 σ 2 ) ,

where σ 1 = 0 , σ 2 = 2 and y 1 = 0 , y 2 , y 3 are the roots of

y 3 2 y 2 8 y = y ( y 2 2 y 8 ) = y ( y 4 ) ( y + 2 ) ,

so y 1 = 0 , y 2 = 4 , y 3 = 2 .

Therefore

α = 1 4 ( 𝜀 1 8 + 𝜀 2 8 + 𝜀 3 16 ) = 𝜀 1 i 2 2 + 𝜀 2 2 2 + 𝜀 3 i

Moreover 𝜀 i = ± 1 satisfy

t 1 t 2 t 3 = 𝜀 1 𝜀 2 𝜀 3 ( i 8 ) ( 8 ) 4 i = σ 1 3 4 σ 1 σ 2 + 8 σ 3 = 8 σ 3 = 32 ,

so 𝜀 3 = 𝜀 1 𝜀 2 . We obtain the four roots

x 1 = 2 2 + i ( 2 2 1 ) , x 3 = x 1 ¯ = 2 2 i ( 2 2 1 ) , x 2 = 2 2 + i ( 2 2 1 ) , x 4 = x 2 ¯ = 2 2 i ( 2 2 1 )

The formulas are NOT surprisingly different.

User profile picture
2022-07-19 00:00
Comments