Exercise 12.1.2

Work out the details of Example 12.1.2.

Answers

Proof. Let F = ( ω ) , z 1 = 1 3 ( x 1 + ω 2 x 2 + ω x 3 ) K = ( ω ) ( x 1 , x 2 , x 3 ) , and 𝜃 ( z ) ( ω ) [ z ] be the resolvent polynomial of z 1 . The orbit of z 1 under the action of S n is composed of

z 1 = 1 3 ( x 1 + ω 2 x 2 + ω x 3 ) , ( 2 , 3 ) z 1 = 1 3 ( x 1 + ω 2 x 3 + ω x 2 ) = 1 3 ( x 1 + ω x 2 + ω 2 x 3 ) = z 2 ( 1 , 3 ) z 1 = 1 3 ( x 3 + ω 2 x 2 + ω x 1 ) = 1 3 ( ω x 1 + ω 2 x 2 + x 3 ) = ω z 2 ( 1 , 2 ) z 1 = 1 3 ( x 2 + ω 2 x 1 + ω x 3 ) = 1 3 ( ω 2 x 1 + x 2 + ω x 3 ) = ω 2 z 2 ( 1 , 2 , 3 ) z 1 = 1 3 ( x 2 + ω 2 x 3 + ω x 1 ) = 1 3 ( ω x 1 + x 2 + ω 2 x 3 ) = ω z 1 ( 1 , 3 , 2 ) z 1 = 1 3 ( x 3 + ω 2 x 1 + ω x 2 ) = 1 3 ( ω 2 x 1 + ω x 2 + x 3 ) = ω 2 z 1 .

So the orbit of z 1 is

O z 1 = { z 1 , z 2 , ω z 1 , ω z 2 , ω 2 z 1 , ω 2 z 2 } ,

and these six elements are distinct in F ( x 1 , x 2 , x 3 ) .

Moreover,

𝜃 ( z ) = ( z z 1 ) ( z z 2 ) ( z ω z 1 ) ( z ω z 2 ) ( z ω 2 z 1 ) ( z ω 2 z 2 ) = ( z 3 z 1 3 ) ( z 3 z 2 3 ) = z 6 ( z 1 3 + z 2 3 ) z 3 + ( z 1 z 2 ) 3

and

z 1 z 2 = 1 9 ( x 1 + ω 2 x 2 + ω x 3 ) ( x 1 + ω x 2 + ω 2 x 3 ) = 1 9 ( x 1 2 + x 2 2 + x 3 2 x 1 x 2 x 2 x 3 x 1 x 3 ) = 1 9 [ ( x 1 + x 2 + x 3 ) 2 3 ( x 1 x 2 + x 2 x 3 + x 1 x 3 ) ] = 1 9 ( σ 1 2 3 σ 2 ) ,

so

z 1 3 z 2 3 = 1 3 6 ( σ 1 2 3 σ 1 ) 3 = 1 27 ( σ 1 2 3 + σ 2 ) 3 = p 3 27 ,  where  p = σ 1 2 3 + σ 2 .

z 1 3 + z 2 3 = 1 27 [ 2 ( x 1 3 + x 2 3 + x 3 3 ) 3 ( x 1 2 x 2 + x 1 x 2 2 + x 1 2 x 3 + x 2 2 x 3 + x 1 x 3 2 + x 2 x 3 2 ) + 12 x 1 x 2 x 3 ] s = x 1 2 x 2 + x 1 x 2 2 + x 1 2 x 3 + x 2 2 x 3 + x 1 x 3 2 + x 2 x 3 2 = ( x 1 x 2 + x 2 x 3 + x 1 x 3 ) ( x 1 + x 2 + x 3 ) 3 x 1 x 2 x 3 = σ 2 σ 1 3 σ 3

x 1 3 + x 2 3 + x 3 3 = ( x 1 2 + x 2 2 + x 3 ) 2 ( x 1 + x 2 + x 3 ) ( x 1 2 x 2 + x 1 x 2 2 + x 1 2 x 3 + x 2 2 x 3 + x 1 x 3 2 + x 2 x 3 2 ) = ( σ 1 2 2 σ 2 ) σ 1 ( σ 2 σ 1 3 σ 3 ) = σ 1 3 3 σ 1 σ 2 + 3 σ 3 . Thus z 1 3 + z 2 3 = 1 27 [ 2 ( σ 1 3 3 σ 1 σ 2 + 3 σ 3 ) 3 ( σ 1 σ 2 3 σ 3 ) + 12 σ 3 ] = 1 27 ( 2 σ 1 3 9 σ 1 σ 2 + 27 σ 3 ) = 2 σ 1 3 27 σ 1 σ 2 3 + σ 3

Finally,

𝜃 ( z ) = z 6 + q z 3 p 3 27 ,

where

p = σ 1 2 3 + σ 2 , q = 2 σ 1 3 27 + σ 1 σ 2 3 σ 3 .

User profile picture
2022-07-19 00:00
Comments