Exercise 12.1.3

This exercise concerns Examples 12.1.3 and 12.1.5.

(a)
Compute the resolvent 𝜃 ( y ) of Example 12.1.3. This can be done using the methods of Section 2.3.
(b)
Let y 1 = x 1 x 2 + x 3 x 4 . Show that H ( y 1 ) = ( 1 2 ) , ( 1 3 2 4 ) S 4 .
(c)
Show that H ( y 1 ) is not normal in S 4 .
(d)
Show that H ( y 1 ) is isomorphic to D 8 , the dihedral group of order 8.

Answers

Proof.

(a)
y 1 = x 1 x 2 + x 3 x 4 , y 2 = ( 2 3 ) y 1 = x 1 x 3 + x 2 x 4 , y 3 = ( 2 4 ) y 1 = x 1 x 4 + x 2 x 3 are distinct elements of the orbit of y 1 .

Since | H ( y 1 ) | = | Stab S 4 ( y 1 ) | = 8 (see Part (b)), | O y 1 | = 3 , so y 1 , y 2 , y 3 are all the elements of O y 1 .

O y 1 = { y 1 , y 2 , y 3 } = { x 1 x 3 + x 2 x 4 , x 1 x 3 + x 2 x 4 , x 1 x 4 + x 2 x 3 } .

Therefore

𝜃 ( y ) = ( ( y ( x 1 x 2 + x 3 x 4 ) ) ( y ( x 1 x 3 + x 2 x 4 ) ) ( y ( x 1 x 4 + x 2 x 3 ) )

Using the methods of section 2.3, we obtain with the following Sage instructions

     e = SymmetricFunctions(QQ).e()
     e1, e2, e3 , e4 =
      e([1]).expand(4),e([2]).expand(4),e([3]).expand(4), e([4]).expand(4)
     R.<y,x0,x1,x2,x3,y1,y2,y3,y4> = PolynomialRing(QQ, order = ’degrevlex’)
     J = R.ideal(e1-y1, e2-y2, e3-y3,e4-y4)
     G = J.groebner_basis()
     
     z1 = x0*x1 + x2*x3
     z2 = x0*x2 + x1*x3
     z3 = x0*x3 + x1*x2
     f = (y-(x0*x1 + x2*x3))*(y-(x0*x2 + x1*x3))*(y-(x0*x3 + x1*x2))
     
     var(’sigma_1,sigma_2,sigma_3,sigma_4’)
     g=f.reduce(G).subs(y1=sigma_1,y2=sigma_2,y3=sigma_3,y4=sigma_4)
     g.collect(y)

σ 1 2 σ 4 σ 2 y 2 + y 3 σ 3 2 + 4 σ 2 σ 4 + ( σ 1 σ 3 4 σ 4 ) y .

So

𝜃 ( y ) = y 3 σ 2 y 2 + ( σ 1 σ 3 4 σ 4 ) y σ 3 2 σ 1 2 σ 4 + 4 σ 2 σ 4 .

(b)
( 1 2 ) y 1 = x 2 x 1 + x 3 x 4 = y 1 , ( 1 3 2 4 ) ( y 1 ) = x 3 x 4 + x 2 x 1 = y 1 ,

therefore

( 1 2 ) , ( 1 3 2 4 ) H ( y 1 ) .

Moreover

( 1 2 ) , ( 1 3 2 4 ) = { ( ) , ( 1 2 ) , ( 1 3 2 4 ) , ( 1 3 ) ( 2 4 ) , ( 1 2 ) ( 3 4 ) , ( 1 4 ) ( 2 3 ) , ( 3 4 ) , ( 1 4 2 3 ) } .

We obtain this by hand, or with the Dimino’s algorithm, or with the Sage instructions:

     G = PermutationGroup([(1,2),(1,3,2,4)])
     G.list()

The orbit of y 1 contains three distinct elements y 1 , y 2 , y 3 , so | O y 1 | 3 . Since | O y 1 | = ( S n : H ( y 1 ) ) , | H ( y 1 ) | 8 . But H ( y 1 ) contains the 8 elements of ( 1 2 ) , ( 1 3 2 4 ) , thus

H ( y 1 ) = ( 1 2 ) , ( 1 3 2 4 ) .

(c)
( 2 3 ) ( 1 3 2 4 ) ( 2 3 ) 1 = ( 1 2 3 4 ) H ( y 1 ) , so H ( y 1 ) is not normal in S 4 .
(d)
If we number the 4 consecutive summits of the square in the order ( 1 , 3 , 2 , 4 ) , then H ( y 1 ) is isomorphic to the group generated by the rotation of angle π 2 corresponding to ( 1 3 2 4 ) and the reflection relative to the diagonal ( 3 , 4 ) corresponding to ( 1 2 ) , and this is the dihedral group D 8 . H ( y 1 ) D 8 .

User profile picture
2022-07-19 00:00
Comments