Exercise 12.1.5

This exercise will study the quadratic equations (12.11). Each quadratic has two roots, which together make up the four roots x 1 , x 2 , x 2 , x 4 of our quadratic.

(a)
For the moment, forget all the theory developed so far, and let y be some root of the Ferrari resolvent (12.10). Given only this, can we determine how y relates to the x i ? This is surprisingly easy to do. Suppose x i , x j are the roots of (12.11) for one choice of sign, and x k , x l are the roots for the other. Thus i , j , k , l are the number 1,2,3,4 in some order. Prove that y is given by y = x i x j + x k x l .
(b)
Now let y 1 = x 1 x 2 + x 3 x 4 , and define the square root in (12.11) using (12.12). Show that the roots of (12.11) are x 1 , x 2 for the plus sign and x 3 , x 4 for the minus sign.

Answers

Proof.

(a)
If y is some root of the Ferrari resolvent, then x i , x j are the roots of x 2 σ 1 2 x + y 2 = + y + σ 1 2 4 σ 2 ( x + σ 1 2 y + σ 3 2 ( y + σ 1 2 4 σ 2 ) ) .

The product x i x j is given by

x i x j = y 2 y + σ 1 2 4 σ 2 ( σ 1 2 y + σ 3 2 ( y + σ 1 2 4 σ 2 ) ) .

Similarly x k , x l are the roots of

x 2 σ 1 2 x + y 2 = y + σ 1 2 4 σ 2 ( x + σ 1 2 y + σ 3 2 ( y + σ 1 2 4 σ 2 ) ) .

and the product x k x l is given by

x k x l = y 2 + y + σ 1 2 4 σ 2 ( σ 1 2 y + σ 3 2 ( y + σ 1 2 4 σ 2 ) ) .

Adding these two formulas, we obtain

x i x j + x k x l = y .

(b)
Using y 1 = x 1 x 2 + x 3 x 4 , and setting t 1 = x 1 + x 2 x 3 x 4 ,

then

y 1 + σ 1 2 4 σ 2 = x 1 x 2 + x 3 x 4 + 1 4 ( x 1 + x 2 + x 3 + x 4 ) 2 ( x 1 x 2 + x 1 x 3 + x 1 x 4 + x 2 x 3 + x 2 x 4 + x 3 x 4 ) = 1 4 [ x 1 2 + x 2 2 + x 3 2 + x 4 2 2 ( x 1 x 2 + x 1 x 3 + x 1 x 4 + x 2 x 3 + x 2 x 4 + x 3 x 4 ) + 4 ( x 1 x 2 + x 3 x 4 ) ] = 1 4 [ x 1 2 + x 2 2 + x 3 2 + x 4 2 + 2 x 1 x 2 + 2 x 3 x 4 2 ( x 1 x 3 + x 1 x 4 + x 2 x 3 + x 2 x 4 ) ] = 1 4 [ ( x 1 + x 2 ) 2 + ( x 3 + x 4 ) 2 2 ( x 1 + x 2 ) ( x 3 + x 4 ) ] = 1 4 ( x 1 + x 2 x 3 x 4 ) 2 = t 1 2 4

We choose the square root such that

y 1 + σ 1 2 4 σ 2 = t 1 2 .

Then the quadratic equation with y = y 1 and the plus sign is

x 2 σ 1 2 x + y 1 2 = + y 1 + σ 1 2 4 σ 2 ( x + σ 1 2 y 1 + σ 3 2 ( y 1 + σ 1 2 4 σ 2 ) ) ,

which gives

x 2 ( σ 1 2 + t 1 2 ) x + y 1 2 + 1 2 t 1 ( σ 1 y 1 2 σ 3 ) .

Let u , v be the roots of this equation, and S = u + v , P = uv be the sum and product of these roots. Then

S = σ 1 2 + t 1 2 = 1 2 ( x 1 + x 2 + x 3 + x 4 + x 1 + x 2 x 3 x 4 ) = x 1 + x 2

P = y 1 2 + 1 2 t 1 ( σ 1 y 1 2 σ 3 ) = y 1 2 + 1 2 t 1 [ ( x 1 + x 2 + x 3 + x 4 ) ( x 1 x 2 + x 3 x 4 ) 2 ( x 1 x 2 x 3 + x 1 x 2 x 4 + x 1 x 3 x 4 + x 2 x 3 x 4 ) ] = y 1 2 + 1 2 t 1 [ x 1 2 x 2 + x 1 x 2 2 + x 3 2 x 4 + x 3 x 4 2 x 1 x 3 x 4 x 2 x 3 x 4 x 1 x 2 x 3 x 1 x 2 x 4 ] = y 1 2 + 1 2 t 1 ( x 1 + x 2 x 3 x 4 ) ( x 1 x 2 x 3 x 4 ) = 1 2 ( x 1 x 2 + x 3 x 4 + x 1 x 2 x 3 x 4 ) = x 1 x 2 Thus u , v are the roots of x 2 Sx + P = ( x x 1 ) ( x x 2 ) , so { u , v } = { x 1 , x 2 } .

x 1 , x 2 are the roots of (12.11) with the plus sign, so x 3 , x 4 are the roots of (12.11) with the minus sign.

User profile picture
2022-07-19 00:00
Comments