Exercise 12.1.6

Explain why the polynomial 𝜃 ( t ) (12.13) has coefficients in K = F ( σ 1 , σ 2 , σ 3 , σ 4 ) .

Answers

Proof.

𝜃 ( t ) = ( t 2 4 y 1 σ 1 2 + 4 σ 2 ) ( t 2 4 y 2 σ 1 2 + 4 σ 2 ) ( t 2 4 y 3 σ 1 2 + 4 σ 2 ) .

Recall that

y 1 = x 1 x 2 + x 3 x 4 y 2 = x 1 x 3 + x 2 x 4 y 3 = x 1 x 4 + x 2 x 3

Let τ = ( 1 2 ) , σ = ( 1 2 3 4 ) . Then

τ y 1 = x 2 x 1 + x 3 x 4 = y 1 , τ y 2 = x 2 x 3 + x 1 x 4 = y 3 , τ y 3 = x 2 x 4 + x 1 x 3 = y 2 ,

and of course τ σ 1 = σ 1 , τ σ 2 = σ 2 .

Therefore τ 𝜃 ( t ) = 𝜃 ( t ) .

Similarly,

σ y 1 = x 2 x 3 + x 4 x 1 = y 3 , σ y 2 = x 2 x 4 + x 3 x 1 = y 2 , σ y 3 = x 2 x 1 + x 3 x 4 = y 1 .

Therefore σ 𝜃 ( t ) = 𝜃 ( t ) .

Since S 4 = σ , τ , every permutation in S 4 lets the coefficients of 𝜃 ( t ) unchanged, therefore 𝜃 ( t ) has coefficients in K = F ( σ 1 , σ 2 , σ 3 , σ 4 ) and 𝜃 ( t ) K [ t ] . □

User profile picture
2022-07-19 00:00
Comments