Exercise 12.1.7

Show that (12.15) implies the equations for x 1 , x 2 , x 3 , x 4 given in the text.

Answers

Proof. We know that

σ 1 = x 1 + x 2 + x 3 + x 4 , t 1 = x 1 + x 2 x 3 x 4 , t 2 = x 1 x 2 + x 3 x 4 , t 3 = x 1 x 2 x 3 + x 4 .

The sum of these equations gives

σ 1 + t 1 + t 2 + t 3 = 4 x 1 ,

so

x 1 = 1 4 ( σ 1 + t 1 + t 2 + t 3 ) .

We can compute similarly σ 1 + t 1 t 2 t 3 , ...

More conceptually, let σ = ( 1 2 ) ( 3 4 ) . Then

σ x 1 = x 2 , σ t 1 = t 1 , σ t 2 = t 2 , σ t 3 = t 3 .

Therefore

x 2 = 1 4 ( σ 1 + t 1 t 2 t 3 ) .

Similarly, if τ = ( 1 3 ) ( 2 4 ) ,

σ x 1 = x 3 , τ t 1 = t 1 , τ t 2 = t 2 , τ t 3 = t 3 .

Therefore

x 3 = 1 4 ( σ 1 t 1 + t 2 t 3 ) .

Finally, if ζ = ( 1 4 ) ( 2 3 ) ,

ζ x 1 = x 4 , ζ t 1 = t 1 , ζ t 2 = t 2 , ζ t 3 = t 3 .

Therefore

x 4 = 1 4 ( σ 1 t 1 t 2 + t 3 ) .

To conclude

x 1 = 1 4 ( σ 1 + t 1 + t 2 + t 3 ) , x 2 = 1 4 ( σ 1 + t 1 t 2 t 3 ) , x 3 = 1 4 ( σ 1 t 1 + t 2 t 3 ) , x 4 = 1 4 ( σ 1 t 1 t 2 + t 3 ) .
User profile picture
2022-07-19 00:00
Comments