Exercise 12.1.8

Let t 1 , t 2 , t 3 defined as in (12.15).

(a)
Lagrange noted that any transposition fixes exactly one of t 1 , t 2 , t 3 and interchanges the other two, possibly changing the sign of both. Prove this and use it to show that t 1 t 2 t 3 is fixed by all elements of S 4 .
(b)
Use the methods of Chapter 2 to express t 1 t 2 t 3 in terms of the σ i . The result should be the identity (12.16).

Answers

Proof.

(a)
By (12.15), t 1 = x 1 + x 2 x 3 x 4 , t 2 = x 1 x 2 + x 3 x 4 , t 3 = x 1 x 2 x 3 + x 4 .

Since H ( t 1 ) = ( 1 2 ) , ( 3 4 ) has order 4, the orbit O t 1 of t 1 under S n has 4 ! 4 = 6 elements, so

O t 1 = { t 1 , t 2 , t 3 , t 1 , t 2 , t 3 } .

( 1 2 ) t 1 = t 1 , ( 1 2 ) t 2 = t 3 , ( 1 2 ) t 3 = t 2 ,

therefore

( 1 2 ) ( t 1 t 2 t 3 ) = t 1 ( t 3 ) ( t 2 ) = t 1 t 2 t 3 .

( 1 2 3 4 ) t 1 = x 2 + x 3 x 4 x 1 = x 1 + x 2 + x 3 x 4 = ( x 1 x 2 x 3 + x 4 ) = t 3

With similar computations, we obtain

( 1 2 3 4 ) t 1 = t 3 , ( 1 2 3 4 ) t 2 = t 2 , ( 1 2 3 4 ) t 3 = t 1 ,

thus

( 1 2 3 4 ) ( t 1 t 2 t 3 ) = ( t 3 ) ( t 2 ) t 1 = t 1 t 2 t 3 .

Since ( 1 2 ) ( t 1 t 2 t 3 ) = t 1 t 2 t 3 , ( 1 2 3 4 ) ( t 1 t 2 t 3 ) = t 1 t 2 t 3 , and S 4 = ( 1 2 ) , ( 1 2 3 4 ) , then t 1 t 2 t 3 is fixed by all elements of S 4 , and so is in F ( σ 1 , σ 2 , σ 3 , σ 4 ) .

(b)
With the methods of Chapter 2, the following Sage instructions
     e = SymmetricFunctions(QQ).e()
     e1,e2,e3,e4 = e([1]).expand(4),e([2]).expand(4),
             e([3]).expand(4),e([4]).expand(4)
     R.<x0,x1,x2,x3,y1,y2,y3,y4> = PolynomialRing(QQ, order = ’lex’)
     J = R.ideal(e1-y1,e2-y2,e3-y3,e4-y4)
     G = J.groebner_basis()
     t1= x0+x1-x2-x3; t2 = x0-x1+x2-x3; t3 = x0-x1-x2+x3
     u = t1*t2*t3
     var(’sigma_1,sigma_2,sigma_3,sigma_4’)
     v = u.reduce(G).subs(y1=sigma_1, y2 = sigma_2,y3=sigma_3,y4=sigma_4);v

give

σ 1 3 4 σ 1 σ 2 + 8 σ 3 .

So

t 1 t 2 t 3 = ( x 1 + x 2 x 3 x 4 ) ( x 1 x 2 + x 3 x 4 ) ( x 1 x 2 x 3 + x 4 ) = σ 1 3 4 σ 1 σ 2 + 8 σ 3 .
User profile picture
2022-07-19 00:00
Comments