Exercise 12.2.13

This exercise will show that not all choices of the t i in (12.21) give Galois resolvents. As in Example 12.2.1, f = ( x 2 2 ) ( x 2 3 ) has roots 2 , 2 , 3 , and 3 . This time we will use ( t 1 , t 2 , t 3 , t 4 ) = ( 0 , 1 , 2 , 3 ) . Show that (12.21) gives the polynomial

s ( y ) = 1679616 45722880 y 2 + 445417056 y 4 1935550800 y 6 + 4169468065 y 8 4504515400 y 10 + 2268233020 y 12 432170200 y 14 + 36781990 y 16 1483000 y 18 + 29596 y 20 280 y 22 + y 24 = ( 81 90 y 2 + y 4 ) 2 ( 16 40 y 2 + y 4 ) 2 ( 1 10 y 2 + y 4 ) 2 .

This does not have distinct roots, so that s ( y ) is not a Galois resolvent.

Answers

Note. The results in Example 12.2.1 are false for ( t 1 , t 2 , t 3 , t 4 ) = ( 0 , 1 , 2 , 4 ) . The first given factor of s ( y ) is 900 132 y 2 + y 4 , which has root 66 + 24 6 = 3 2 + 4 3 and this root can’t be written t σ ( 1 ) 2 + t σ ( 2 ) ( 2 ) + t σ ( 3 ) 3 + t σ ( 4 ) ( 3 ) for any permutation σ S 4 . Idem for the second factor 25 118 y 2 + y 4 .

The following Sage instructions gives the right answer :

t1,t2,t3,t4 = 0,1,2,4
var(’x1,x2,x3,x4’)
V = t1*x1 + t2*x2 + t3*x3 + t4*x4
from itertools import permutations
R.<y> = ZZ[]
t = 1
for perm in permutations([x1,x2,x3,x4]):
    t = t * (y - V.subs(x1 = perm[0], x2 = perm[1], x3 = perm[2], x4 = perm[3]))
s0= t.subs(x1 = sqrt(2),x2 = -sqrt(2), x3 = sqrt(3),x4 = -sqrt(3))
s = R(s0.expand())
s

s ( y ) = y 24 350 y 22 + 52395 y 20 4390200 y 18 + 226512195 y 16 7470312150 y 14 + 158533048725 y 12 2128033120500 y 10 + 17319964832940 y 8 79514980673600 y 6 + 185487963684016 y 4 182187606350400 y 2 + 57817774440000

and

s.factor()

gives the Galois resolvent s ( y ) :

( y 4 100 y 2 + 2116 ) ( y 4 70 y 2 + 361 ) ( y 4 70 y 2 + 841 ) ( y 4 60 y 2 + 36 ) ( y 4 28 y 2 + 100 ) ( y 4 22 y 2 + 25 )

The minimal polynomial of V = 2 2 3 is the factor h = y 4 28 y 2 + 100 .

Proof.

The same instructions with t 1 , t 2 , t 3 , t 4 = 0 , 1 , 2 , 3 give

s ( y ) = y 24 200 y 22 + 16620 y 20 743400 y 18 + 19430070 y 16 302989800 y 14 + 2777491500 y 12 14100111000 y 10 + 34064189265 y 8 25798725200 y 6 + 7753861216 y 4 910060800 y 2 + 36000000 = ( y 4 58 y 2 + 625 ) ( y 4 42 y 2 + 225 ) ( y 4 40 y 2 + 16 ) 2 ( y 4 10 y 2 + 1 ) 2

This does not have distinct roots, so that s ( y ) is not a Galois resolvent.

(But the result is not the same as in the statement.) □

User profile picture
2022-07-19 00:00
Comments