Exercise 12.2.3

This exercise will prove Galois’s Lemma III using the methods of Lagrange. Let V = t 1 α 1 + + t n α n , where t 1 , , t n are chosen so that the Galois resolvent s ( y ) from (12.21) is separable. Also let V σ = t 1 α σ ( 1 ) + + t n α σ ( n ) for σ S n . Prove that each α j can be written as a rational function in V with coefficients in F by adapting the second proof of Theorem 12.1.6.

Answers

Proof. We know from Section 12.2.B the definition of the Galois resolvent

s ( y ) = σ S n ( y V σ ) F [ y ] .

Let j [[ 1 , n ]] be a fixed integer. We show that α j F ( V ) , where V = V e = t 1 α 1 + + t n α n .

Let

ψ j ( y ) = σ S n α σ ( j ) s ( y ) y V σ = σ S n α σ ( j ) τ σ ( y V τ ) .

If p σ = τ σ ( y V τ ) , then for φ S n , p σ ( V φ ) = 0 if φ σ , and τ σ ( V σ V τ ) if φ = σ . Therefore, for φ = e ,

ψ j ( V ) = α j τ e ( V V τ ) .

Moreover s ( y ) = σ S n τ σ ( y V τ ) , so

s ( V ) = τ e ( V V τ ) .

Since the Galois resolvent s ( y ) is separable, s ( V ) = τ e ( V V τ ) 0 , so

α j = ψ j ( V ) s ( V ) .

We know that s ( y ) , s ( y ) are in F [ y ] . It remains to prove that ψ j ( y ) F [ y ] . We use V ( x 1 , , x n ) = t 1 x 1 + + t n x n F [ x 1 , , x n ] , so that

V σ = V ( α σ ( 1 ) , , α σ ( n ) ) ,

and

Ψ j ( y , x 1 , , x n ) = σ S n x σ ( j ) τ σ ( y V ( x τ ( 1 ) , , x τ ( n ) ) ) ,

so that ψ j ( y ) = Ψ j ( y , α 1 , , α n ) . Then, for all φ S n ,

φ Ψ j = σ S n x ( φσ ) ( j ) τ σ ( y V ( x ( φτ ) ( 1 ) , , x ( φτ ) ( n ) ) = σ S n x ( φσ ) ( j ) τ φσ ( y V ( x τ ( 1 ) , , x τ ( n ) ) ( τ = φτ ) = σ S n x σ ( j ) τ σ ( y V ( x τ ( 1 ) , , x τ ( n ) ) ( σ = φσ ) = Ψ j

Therefore the coefficients of Ψ j lie in the field F ( σ 1 , , σ n ) , and the evaluation x i α i gives

ψ j ( y ) F [ y ] .

Therefore α j = ψ j ( V ) s ( V ) F ( V ) , j = 1 , , n , and V F ( α 1 , , α n ) , so

F ( α 1 , , α n ) = F ( V ) .

User profile picture
2022-07-19 00:00
Comments