Exercise 12.3.3

Let R be a commutative ring and let M 1 , , M s be elements of R . Prove that the set M 1 , , M s = { i = 1 s A i M i | A i R } is an ideal of R .

Answers

Proof. Write I = M 1 , , M s . I is a subgroup of R , since 0 I , and if M , N I , then M = i = 1 s A i M i , A i R , N = i = 1 s B i M i , B i R , so M N = i = 1 s C i M i , where C i = A i B i R , so M N I .

Moreover, if M I and A R , then M = i = 1 s A i M i , A i R , therefore AM = i = 1 s D i M i , where D i = A A i R .

I = M 1 , , M s is an ideal of R . □

User profile picture
2022-07-19 00:00
Comments