Exercise 12.3.8

This exercise is concerned with Ψ i ( y ) from (12.37). Let S ( y ) be as in (12.36).

(a)
Show that applying (12.5) and (12.8) from the proof of Theorem 12.1.6 with f = β = t 1 x 1 + + t n x n and g = x i gives x i = Φ i ( β ) S ( β ) ,

where

Φ i ( y ) = σ S n S ( y ) x σ ( i ) y σ β .

Also prove that Φ i ( y ) F [ σ 1 , , σ n , y ] .

(b)
Use Exercice 7 to show that there are polynomials A , B F [ σ 1 , , σ n , y ] such that A ( y ) S ( y ) + B ( y ) S ( y ) = Δ ( S ) . Also show that B ( β ) S ( β ) = Δ ( S ) .
(c)
Use part (b) to show that (12.37) holds with Ψ i ( y ) = B ( y ) Φ i ( y ) .

Answers

Proof.

(a)
Let S ( y ) = σ S n ( y ( t 1 x σ ( 1 ) + + t n x σ ( n ) ) ) = σ S n ( y σ β ) ,

where β = t 1 x 1 + + t n x n .

As in (12.5), where here σ S n is the index of the sum, and ψ = x i , φ = β , φ σ = σ β , ψ σ = σ ψ = x σ ( i ) , 𝜃 = S , define

Φ i ( y ) = σ S n S ( y ) x σ ( i ) y σ β .

Since S ( y ) y σ β = τ S n { σ } ( y τ β ) , Φ i is a polynomial in y , with coefficients in F [ x 1 , , x n ] . Moreover, for all τ S n , since τ S ( y ) = S ( y ) ,

τ Φ i ( y ) = σ S n S ( y ) x ( τ σ ) ( i ) y ( τ σ ) β = σ S n S ( y ) x σ ( i ) y σ β ( σ = τ σ ) = Φ i ( y )

Therefore,

Φ i ( y ) F [ σ 1 , , σ n , y ] .

If we evaluate the polynomial

S ( y ) y σ β = τ S n { σ } ( y τ β )

at β , then we get τ e ( β τ β ) if σ = e and 0 otherwise. Therefore

Φ i ( β ) = x i τ e ( β τ β ) .

Moreover S ( y ) = σ S n ( y σ β ) , thus S ( β ) = τ e ( β τ β ) . We conclude, as in (12.8), that

x i = Φ i ( β ) S ( β ) .

(b)
The conclusion of Exercise 7 applied to S = f shows that there are polynomials A , B such that A ( y ) S ( y ) + B ( y ) S ( y ) = Δ ( S ) .

Since the coefficients of A and B are polynomials in the coefficients of S , A , B F [ σ 1 , , σ n , y ] .

The definition of S gives S ( β ) = 0 . Therefore

B ( β ) S ( β ) = Δ ( S ) .

(c)
If we define Ψ i ( y ) = B ( y ) Φ i ( y ) , then x i = Φ i ( β ) S ( β ) = B ( β ) Φ i ( β ) B ( β ) S ( β ) = Ψ i ( β ) Δ ( S ) .

User profile picture
2022-07-19 00:00
Comments