Exercise 13.1.10

As in Example 13.1.4, let f = x 4 + b x 2 + d F [ x ] , where d F 2 . Compute Δ ( f ) and 𝜃 f ( y ) .

Answers

Proof. The discriminant of f is

Δ ( f ) = 16 b 4 d 128 b 2 d 2 + 256 d 3 = 16 d ( b 2 4 d ) 2 .

The Ferrari resolvent is

𝜃 f ( y ) = y 3 b y 2 4 dy + 4 bd = ( y b ) ( y 2 4 d ) .

Sage instructions:

R.<x,b,d> = QQ[]
f=x^4+b*x^2+d
c1 = 0; c2 = b; c3 = 0; c4 = d;
theta_f = x^3 - c2*x^2 + (c1*c3-4*c4)*x - c3^2-c1^2*c4 + 4*c2*c4;
factor(theta_f)

( x + b ) ( x 2 + 4 d )

Delta = theta_f.discriminant(x)
factor(Delta)

( 16 ) d ( b 2 + 4 d ) 2

Thus 𝜃 f ( y ) = ( y b ) ( y 2 d ) ( y + 2 d ) has a unique root in F if d F 2 , and the discriminant is not a square in F 2 . □

User profile picture
2022-07-19 00:00
Comments