Exercise 13.1.12

This exercise is concerned with the proof of Proposition 13.1.5.

(a)
Prove (13.12).
(b)
Prove that the two polynomials h 1 and h 2 defined in the proof of the proposition factor as h 1 = ( y ( α 1 + α 2 ) ) ( y ( α 3 + α 4 ) ) and h 2 = ( y α 1 α 2 ) ( y α 3 α 4 ) .

Answers

Proof.

(a)
Let g = y 2 + Ay + B F [ y ] and let F F ( a ) , a F , be a quadratic extension.

If Δ ( g ) = 0 then a Δ ( g ) = 0 F 2 . Suppose now that g is irreducible over F .

Suppose that g splits completely over F ( a ) , so g = ( y y 1 ) ( y y 2 ) , y 1 , y 2 F ( a ) .

Then Δ ( g ) = ( y 1 y 2 ) 2 = A 2 4 B F . We choose Δ ( g ) = y 2 y 1 F ( a ) . Here deg ( g ) = 2 , and g is irreducible over F , therefore the roots of g

y 1 = 1 2 ( ( y 1 + y 2 ) + ( y 1 y 2 ) ) = 1 2 ( A Δ ( g ) ) , y 2 = 1 2 ( ( y 1 + y 2 ) ( y 1 y 2 ) ) = 1 2 ( A + Δ ( g ) ) ,

are not in F , and this is equivalent to

Δ ( g ) F .

Since Δ ( g ) F ( a ) , and Δ ( g ) F ,

Δ ( g ) = u + v a , u , v F , v 0 .

Therefore

u 2 = ( Δ ( g ) v a ) 2 = Δ ( g ) + a v 2 2 v a Δ ( g )

Since v 0 , and char ( F ) 2 ,

a Δ ( g ) = Δ ( g ) + a v 2 u 2 2 v F ,

so

a Δ ( g ) F 2 .

Conversely, suppose that a Δ ( g ) F 2 . Here a 0 since F ( a ) is a quadratic extension of F . There exists w F such that a Δ ( g ) = w 2 .

We choose Δ ( g ) such that

Δ ( g ) = w a = w a a F ( a ) .

Then

y 1 = 1 2 ( ( y 1 + y 2 ) + ( y 1 y 2 ) ) = 1 2 ( A Δ ( g ) ) , y 2 = 1 2 ( ( y 1 + y 2 ) ( y 1 y 2 ) ) = 1 2 ( A + Δ ( g ) ) ,

are in F ( a ) , so g = ( y y 1 ) ( y y 2 ) splits completely over F ( a ) .

Finally, if Δ ( g ) = 0 , g = ( y y 0 ) 2 , where y 0 = A 2 F , splits completely over F , a fortiori over F ( a ) .

Conclusion:

Let g = y 2 + Ay + B and F ( a ) a quadratic extension of F , with char ( F ) 2 . If Δ ( g ) = 0 , or if g is irreducible over F , then

g  splits completely over  F ( a ) a Δ ( g ) F 2 .

(b)
( y ( α 1 + α 2 ) ) ( y ( α 3 + α 4 ) ) = y 2 ( α 1 + α 2 + α 3 + α 4 ) y + ( α 1 α 3 + α 1 α 4 + α 2 α 3 + α 2 α 4 ) = y 2 c 1 y + ( α 1 α 2 + α 1 α 3 + α 1 α 4 + α 2 α 3 + α 2 α 4 + α 3 α 4 ) ( α 1 α 2 + α 3 α 4 ) = y 2 c 1 y + c 2 β ,

so

h 1 = y 2 c 1 y + c 2 β = ( y ( α 1 + α 2 ) ) ( y ( α 3 + α 4 ) ) .

Similarly

( y α 1 α 2 ) ( y α 3 α 4 ) = y 2 ( α 1 α 2 + α 3 α 4 ) y + α 1 α 2 α 3 α 4 = y 2 βy + c 4

so

h 2 = y 2 βy + c 4 = ( y α 1 α 2 ) ( y α 3 α 4 ) .

We have proved that h 1 , h 2 split completely over L . Since deg ( h 1 ) = 2 , h 1 splits over a quadratic extension F M , with M L . But the unique such quadratic extension is F ( Δ ( f ) ) (since Gal ( L F ) 4 has a unique subgroup of index 2). Therefore M = F ( Δ ( f ) ) , and h 1 splits completely over F ( Δ ( f ) ) , and also h 2 . □

User profile picture
2022-07-19 00:00
Comments