Exercise 13.1.13

Suppose that f F [ x ] satisfies the hypothesis of part (c) of Theorem 13.1.1, and let α be a root of f . Prove that G 4 if f splits completely over F ( α ) , and G D 8 otherwise. This gives a version of part (c) that doesn’t use resolvents. Since we can factor over extension fields by Section 4.2, this method is useful in practice.

Answers

Proof. With the hypothesis of part (c), Δ ( f ) F 2 , so Δ ( f ) 0 and f is separable.

If G 4 , then G = σ S 4 , where σ corresponds to σ ~ Gal ( L F ) . Write G α = Stab G ( α ) . Since f is irreducible, O α = { α 1 , α 2 , α 3 , α 4 } is the set of the four roots of f , therefore 4 = | O α | = ( G : G α ) , so G α = { e } . Hence σ ~ i ( α ) σ ~ j ( α ) if 1 i < j 4 . We choose the numbering of the roots such that α 1 = α , and σ ~ ( α 1 ) = α 3 , σ ~ ( α 3 ) = α 2 , σ ~ ( α 2 ) = α 4 are the four distinct roots of f , so σ = ( 1 3 2 4 ) . f = ( x α 1 ) ( x α 3 ) ( x α 2 ) ( x α 4 ) = ( x α ) ( x σ ~ ( α ) ) ( x σ ~ 2 ( α ) ) ( x σ ~ 3 ( α ) ) .

As Δ ( f ) F 2 , F ( Δ ( f ) ) is a quadratic extension of F .

Since the only subgroup of G are { e } H = σ 2 G = σ , by the Galois correspondence, the only intermediate fields of F L are F F ( Δ ( f ) ) L , and the fixed field of H = σ 2 is L H = F ( Δ ( f ) ) .

If F ( α ) F ( Δ ( f ) ) , then α F ( Δ ( f ) ) = L H , therefore σ 2 ( α ) = α , and so α 2 = α 1 , in contradiction with the separability of f . Hence F ( α ) F ( Δ ( f ) ) , so

F ( α ) = L = F ( α 1 , α 2 , α 3 , α 4 ) .

Then f splits completely over F ( α ) .

If G 4 , then by Theorem 13.1.1, G D 8 . Therefore [ L : F ] = | G | = 8 , and [ F ( α ) : F ] = deg ( f ) = 4 , which implies F ( α ) L = F ( α 1 , α 2 , α 3 , α 4 ) . Therefore one of the roots α i is not in F ( α ) , and so f = ( x α 1 ) ( x α 2 ) ( x α 3 ) ( x α 4 ) doesn’t splits completely over F ( α ) .

Conclusion. Let f be a quadratic polynomial, and let α be a root of f .

If Δ ( f ) F 2 and 𝜃 f ( y ) is reducible over F , then

f  splits completely over  F ( α ) Gal F ( f ) 4 , f  doesn’t split completely over  F ( α ) Gal F ( f ) D 8 .

Example 1: f = x 4 12 x 2 + 18 over .

R.<x> = QQ[]
f = x^4-12*x^2 + 18
print(f.is_irreducible())
factor(f.discriminant()), f.discriminant().is_square()

True

( 2 11 3 6 , False ) .

l = f.coefficients(sparse=False);
c1 = -l[3]/l[4]; c2 = l[2]/l[4];c3 = -l[1]/l[4]; c4 = l[0]/l[4];
S.<y> = QQ[]
theta_f = y^3 -c2*y^2 +(c1*c3-4*c4)*y - c3^2-c1^2*c4 + 4*c2*c4;
factor(theta_f)

( y + 12 ) ( y 2 72 )

K.<a>= NumberField(f)
S.<x> = K[]
f = x^4-12*x^2 + 18
factor(f)

( x a ) ( x + a ) ( x 1 3 a 3 + 3 a ) ( x + 1 3 a 3 3 a )

These results prove that the Galois group of f = x 4 12 x 2 + 18 over is isomorphic to 4 . Verification with Sage:

R.<x> = QQ[]
f = x^4-12*x^2 + 18
f.galois_group().gens()

[ ( 1 , 2 , 3 , 4 ) ]

f.galois_group().structure_description()

C 4

Example 2: f = x 4 2 over .

R.<x> = QQ[]
f = x^4-2
print(f.is_irreducible())
factor(f.discriminant()), f.discriminant().is_square()

True

( 1 2 11 , False )

l = f.coefficients(sparse=False);
c1 = -l[3]/l[4]; c2 = l[2]/l[4];c3 = -l[1]/l[4]; c4 = l[0]/l[4];
S.<y> = QQ[]
theta_f = y^3 -c2*y^2 +(c1*c3-4*c4)*y - c3^2-c1^2*c4 + 4*c2*c4;
factor(theta_f)

y ( y 2 + 8 )

K.<a>= NumberField(f)
S.<x> = K[]
f = x^4-2
factor(f)

( x a ) ( x + a ) ( x 2 + a 2 )

Thus the Galois group of x 4 2 over is D 8 . Verification with Sage:

R.<x> = QQ[]
f = x^4-2
f.galois_group().gens()

[ ( 1 , 2 , 3 , 4 ) , ( 1 , 3 ) ]

f.galois_group().structure_description()

D 4

Example 3: f = x 4 18 x 2 + 9 over .

R.<x> = QQ[]
f = x^4-18*x^2 + 9
print(f.is_irreducible())
factor(f.discriminant()), f.discriminant().is_square()

True

( 2 14 3 6 , True )

l = f.coefficients(sparse=False);
c1 = -l[3]/l[4]; c2 = l[2]/l[4];c3 = -l[1]/l[4]; c4 = l[0]/l[4];
S.<y> = QQ[]
theta_f = y^3 -c2*y^2 +(c1*c3-4*c4)*y - c3^2-c1^2*c4 + 4*c2*c4;
factor(theta_f)

( y 6 ) ( y + 6 ) ( y + 18 )

The Galois group of f = x 4 18 x 2 + 9 over is isomorphic to 2 × 2 . Verification with Sage:

R.<x> = QQ[]
f = x^4-18*x^2 + 9
f.galois_group().gens()

[ ( 1 , 2 ) ( 3 , 4 ) , ( 1 , 4 ) ( 2 , 3 ) ]

f.galois_group().structure_description()

C 2 × C 2

User profile picture
2022-07-19 00:00
Comments