Exercise 13.1.4

Use Example 7.3.4 from Chapter 7 to show that (13.8) gives all subgroups of ( 1 3 2 4 ) , ( 1 2 ) of order 4 or 8.

Answers

Proof. We obtain all subgroups of D 8 σ , τ , where σ = ( 1 3 2 4 ) , τ = ( 1 2 ) , in Exercise 7.3.3

If G is a subgroup of order 4 or 8, then G is one of the four groups

σ 2 , τ , σ , σ 2 , στ , σ , τ ,

Moreover σ 2 = ( 1 2 ) ( 3 4 ) and στ = ( 1 4 ) ( 2 3 ) , so

σ 2 , τ = ( 1 2 ) ( 3 4 ) , ( 1 2 ) = ( 3 4 ) , ( 1 2 ) ,

and

σ 2 , στ = ( 1 2 ) ( 3 4 ) , ( 1 4 ) ( 2 3 ) = ( 1 2 ) ( 3 4 ) , ( 1 3 ) ( 2 4 )

is the group of double transpositions { ( ) , ( 1 2 ) ( 3 4 ) , ( 1 4 ) ( 2 3 ) , ( 1 3 ) ( 2 4 ) } .

Therefore G is one of the four groups given in the text

( 1 2 ) , ( 3 4 ) , ( 1 2 ) ( 3 4 ) , ( 1 3 ) ( 2 4 ) , ( 1 3 2 4 ) , ( 1 3 2 4 ) , ( 1 2 ) .

User profile picture
2022-07-19 00:00
Comments