Exercise 13.1.8

In Example 10.3.10, we showed that the roots of f = 7 m 4 16 m 3 21 m 2 + 8 m + 4 [ m ] can be constructed using origami. Show that the splitting field of f is an extension of of degree 24. By the results of Section 10.1, it follows that the roots of f are not constructible with straightedge and compass, since 24 is not a power of 2 .

Answers

Proof. The discriminant of g = 1 7 f is

Δ ( g ) = 174446784 117649 = 2 6 3 6 3739 7 6 ,

so Δ ( g ) is not a square in .

The Ferrari resolvent is

𝜃 f ( y ) = y 3 + 3 y 2 240 49 y 3824 343 .

and

7 3 𝜃 f ( y ) = 343 y 3 + 1029 y 2 1680 y 3824

has no root in , so is irreducible over .

By theorem 13.1.1, G = S 4 . Therefore the splitting field L of f has degree

[ L : ] = | G | = 24 .

Sage instructions :

var(’m’)
R.<m> = QQ[m]
f= 7*m^4-16*m^3-21*m^2+8*m+4
g=f/7
d=g.discriminant()
d.factor()

2 6 3 6 7 6 3739

R.<y> = QQ[]
l = f.coefficients(sparse=False);
c1 = -l[3]/l[4]; c2 = l[2]/l[4];c3 = -l[1]/l[4]; c4 = l[0]/l[4];
theta_f = y^3 -c2*y^2 +(c1*c3-4*c4)*y - c3^2-c1^2*c4 + 4*c2*c4;

y 3 + 3 y 2 240 49 y 3824 343

theta_f.is_irreducible()

True

User profile picture
2022-07-19 00:00
Comments