Exercise 13.2.12

Let f = x 5 6 x + 3 [ x ] . Compute Δ ( f ) and 𝜃 f ( y ) and show that 𝜃 f ( y ) is irreducible over .

Answers

Proof. By the Schönemann-Eisenstein Criterion for p = 3 , we know that f is irreducible over .

The discriminant f = x 5 + ax + b , a , b is given (see Ex. 15) by

Δ ( f ) = 256 a 5 + 3125 b 4 ,

so

Δ ( f ) = 256 6 5 + 3125 3 4 = 1737531 .

If we apply on the resolvent 𝜃 f ( y ) the evaluation σ 1 0 , σ 2 0 , σ 3 0 , σ 4 a , σ 5 b , we obtain

𝜃 f ( y ) = ( y 3 20 a y 2 + 240 a 2 y + 320 a 3 ) 2 2 10 ( 256 a 5 + 3125 b 4 ) y

With a = 6 , b = 3 , we obtain

𝜃 f ( y ) = ( y 3 + 120 y 2 + 8640 y 69120 ) 2 + 2 10 1737531 y = y 6 + 240 y 5 + 31680 y 4 + 1935360 y 3 + 58060800 y 2 + 584838144 y + 4777574400

The Schönemann-Eisenstein Criterion doesn’t apply.

With Sage, we obtain

R.<y> = QQ[]
p=y^6 + 240*y^5 + 31680*y^4 + 1935360*y^3 + 58060800*y^2 + 584838144*y + 4777574400
p.is_irreducible()

True

𝜃 f ( y ) is irreducible over . A fortiori, 𝜃 f ( y ) has no root in .

Since Δ ( f ) < 0 is not a square in , the Galois group of f is S 5 . □

User profile picture
2022-07-19 00:00
Comments