Exercise 13.2.14

Let f = x 5 + p x 3 + 1 5 p 2 x + q [ x ] be as in Example 13.2.10, and assume that f is irreducible over .

(a)
Compute Δ ( f ) and 𝜃 f ( y ) .
(b)
Factor 𝜃 f ( y ) [ x ] , and conclude that 5 p 2 is a root of 𝜃 f ( y ) .
(c)
Show that the substitution x = z p 5 z transforms f into z 5 p 5 5 5 z 5 + q .
(d)
Use part (c) to give an elementary proof that f is solvable by radicals over .

Answers

Proof.

(a)
We obtain the discriminant with Sage:
     S.<p,q,x> = QQ[]
     f = x^5 + p*x^3 +(1/5)*p^2*x + q
     Delta = f.discriminant(x);Delta.factor()

( 1 3125 ) ( 4 p 5 + 3125 q 2 ) 2

So

Δ ( f ) = 1 5 5 ( 4 p 5 + 3125 q 2 ) 2 .

We use the following procedure to compute a sextic resolvent with the same method as in Exercise 6:

     def resolvent(f):
         l = f.coefficients(sparse = False)
         R.<Delta,x1,x2,x3,x4,x5,y1,y2,y3,y4,y5,y,P,Q,e> = PolynomialRing(QQ, order = ’degrevlex’)
         elt = SymmetricFunctions(QQ).e()
         e = [elt([i]).expand(5).subs(x0=x1, x1=x2, x2=x3, x3 = x4, x4 = x5)
                        for i in range(6)]
         J = R.ideal(e[1]-y1, e[2]-y2, e[3]-y3,e[4]-y4,e[5]-y5)
         G = J.groebner_basis()
         u1 =x1*x2 + x2*x3 + x3*x4 + x4*x5 + x5*x1 - x1*x3 - x3*x5 -x5*x2 - x2*x4 -x4*x1
         u2 = u1.subs(x1 = x2, x2 = x3, x3 = x1)
         u3 = u1.subs(x2 = x3, x3 = x4, x4 = x2)
         u4 = u1.subs(x3 = x4, x4 = x5, x5 = x3)
         u5 = u1.subs(x1 = x4, x4 = x5, x5 = x1)
         u6 = u1.subs(x1 = x2, x2 = x5, x5 = x1)
         f1 = (y-u1) * (y-u2) * (y-u3) * (y-u4) * (y-u5) * (y-u6)
         var(’sigma_1,sigma_2,sigma_3,sigma_4,sigma_5’)
         g = f1.reduce(G).subs(y1=sigma_1, y2=sigma_2, y3=sigma_3, y4=sigma_4, y5= sigma_5)
         h = g.collect(y);
         B2 = h.coefficient(y,4)
         B4 = h.coefficient(y,2)
         B6 = h.coefficient(y,0)
         b2 = B2.subs(sigma_1 = -l[4], sigma_2= l[3],sigma_3 = -l[2], sigma_4 = l[1], sigma_5 = -l[0])
         b4 = B4.subs(sigma_1 = -l[4], sigma_2= l[3],sigma_3 = -l[2], sigma_4 = l[1], sigma_5 = -l[0])
         b6 = B6.subs(sigma_1 = -l[4], sigma_2= l[3],sigma_3 = -l[2],
                     sigma_4 = l[1], sigma_5 = -l[0])
         theta_f = [(y^3+b2*y^2+b4*y+b6)^2 - 2^10*Delta*y,b2,b4,b6]
         return theta_f

Then we obtain b 2 , b 4 , b 6 and 𝜃 f ( y ) :

     K.<p,q> = QQ[]
     S.<x> =PolynomialRing(K, order = ’degrevlex’)
     f = x^5 + p*x^3 +(1/5)*p^2*x + q
     resolvent(f)[1:4]

( 7 p 2 , 11 p 4 , 3 25 p 6 + 4000 p q 2 )

     theta_f=resolvent(f)[0];theta_f

𝜃 f ( y ) = 1 625 ( 3 p 6 + 275 p 4 y 175 p 2 y 2 + 100000 p q 2 + 25 y 3 ) 2 1024 Δ ( f ) y = ( y 3 7 p 2 y 2 + 11 p 4 y + 3 25 p 6 + 4000 p q 2 ) 2 2 10 Δ ( f ) y

We obtained the results given in the text.

(b)
To find the rational root of f we write
     theta_f.subs(Delta = (1/5)^5*(4*p^5+3125*q^2)^2)).factor()

1 3125 ( 5 p 2 y ) ( 9 p 10 1625 p 8 y + 74250 p 6 y 2 + 600000 p 5 q 2 81250 p 4 y 3 + 50000000 p 3 q 2 y + 28125 p 2 y 4 25000000 p q 2 y 2 3125 y 5 + 10000000000 q 4 )

Thus

𝜃 f ( 5 p 2 ) = 0 .

By Corollary 13.2.11, f is solvable by radicals over .

(c)
The substitution x = z p 5 z is obtained by
     z = var(’z’)
     g = f.subs(x = z - p/(5*z))
     g.expand()

z 5 + q p 5 3125 z 5

Thus

g ( z ) = f ( z p 5 z ) = z 5 p 5 5 5 z 5 + q .

(d)
Let β . g ( β ) = 0 β 10 + q β 5 ( p 5 ) 5 = 0 ( β 5 + q 2 ) 2 [ ( q 2 ) 2 + ( p 5 ) 5 ] = 0 [ β 5 + q 2 ( q 2 ) 2 + ( p 5 ) 5 ] [ β 5 + q 2 ( q 2 ) 2 + ( p 5 ) 5 ] = 0 .

So the 10 roots of g are

β k , 𝜀 = ζ k q 2 + 𝜀 ( q 2 ) 2 + ( p 5 ) 5 5 , 𝜀 = ± 1 , k = 0 , 1 , 2 , 3 , 4 .

where ζ = ζ 5 = e 2 5 .

Let α be a root of f in . There exists β such that α = β p 5 β , so

0 = f ( α ) = f ( β p 5 β ) = g ( β ) .

Since g ( β ) = 0 , β = β k , 𝜀 for some k { 0 , , 4 } , 𝜀 { 1 , 1 } . If L is the splitting field of f in , then

L ( β 0 , 1 , , β 4 , 1 , β 0 , 1 , , β 4 , 1 ) .

Write δ = ( q 2 ) 2 + ( p 5 ) 5 . Since β k , 𝜀 ( δ , ζ , q 2 + 𝜀 δ 5 ) ,

L ( ζ 5 , δ , q 2 + δ 5 , q 2 δ 5 ) ,

where δ , q , so L is included in some radical extension of .

Therefore f is solvable by radicals over .

Note: We can choose q 2 δ 5 so that q 2 + δ 5 q 2 δ 5 = p 5 . Therefore

L ( ζ 5 , δ , q 2 + δ 5 ) ,

where the chain of inclusions

( ζ 5 ) ( ζ 5 , δ ) ( ζ 5 , δ , q 2 + δ 5 )

proves that this last field is a radical extension.

User profile picture
2022-07-19 00:00
Comments