Exercise 13.2.15

As in Theorem 13.2.12, let f = x 5 + ax + b . Compute Δ ( f ) and 𝜃 f ( y ) .

Answers

Proof. With the same Sage procedure as in Exercise 14, we obtain:

S.<a,b,x> = QQ[]
f = x^5 + a*x + b
Delta = f.discriminant(x);Delta.factor()

Δ ( f ) = 256 a 5 + 3125 b 4 ,

K.<a,b> = QQ[]
S.<x> =PolynomialRing(K, order = ’degrevlex’)
f = x^5 + a*x + b
theta_f=resolvent(f)[0];theta_f.subs(Delta = f.discriminant())

𝜃 f ( y ) = ( y 3 20 a y 2 + 240 a 2 y + 320 a 3 ) 2 2 10 ( 256 a 5 + 3125 b 4 ) y .

User profile picture
2022-07-19 00:00
Comments