Exercise 13.2.19

Use the methods of this section to compute the Galois group over of each of the following polynomials. Be sure to check that they are irreducible. Remember that in Section 4.2 we learned how to factor polynomials over a finite extension of .

(a)
x 5 + x + 1 .
(b)
x 5 + 20 x + 16 .
(c)
x 5 + 2 .
(d)
x 5 5 x + 12 .
(e)
x 5 + x 4 4 x 3 3 x 2 + 3 x + 1 .

Answers

Proof. We use the Exercise 14 resolvent() procedure to compute a sextic resolvent, and the additional procedure to verify that this resolvent has a rational root (the polynomials are supposed, as in this exercise, monic with integer coefficients, i.e., f [ x ] , hence resolvent rational root is an integer):

def rational_root(theta):
    n = Integer(theta.subs(y=0))
    if n == 0:
        return True, 0
    for d in n.divisors():
        if theta.subs(y = d) == 0:
            return True, d
        if theta.subs(y = -d)== 0:
            return True, -d
    return False, None

(a)
     R.<x> = QQ[]
     f = x^5 + x + 1;f

x 5 + x + 1

     f.is_irreducible()

False

     f.factor()

f = ( x 2 + x + 1 ) ( x 3 x 2 + 1 )

The roots of x 2 + x + 1 are ω , ω 2 . Write x 1 , x 2 , x 3 the roots of x 3 x 2 + 1 . Then L = ( ω , x 1 , x 2 , x 3 ) is the splitting field of f over . As L = ( ω ) ( x 1 , x 2 , x 3 ) , L is also the splitting field of g = x 3 x 2 + 1 over ( ω ) . The discriminant of g is Δ ( g ) = 23 . We show that 23 ( ω ) 2 .

If 23 = ( a + ) 2 , a , b , then 23 = a 2 b 2 ωb ( b 2 a ) . Therefore

{ 23 = a 2 b 2 , 0 = b ( b 2 a ) .

Thus b = 0 or b = 2 a . If b = 0 , then 23 = a 2 , which is impossible since a , and b = 2 a gives a 2 = 23 3 , which is also impossible. Therefore Δ ( g ) is not a square in ( ω ) , so the Galois group G 1 of g over ( ω ) is S 3 . This implies that [ L : ( ω ) ] = | G 1 | = 6 . Since [ ( ω ) : ] = 2 , [ L : ] = 12 , so the Galois group G of f = x 5 + x + 1 has order 12 :

| G | = 12 .

Since 23 is not a square of , Gal ( ( x 1 , x 2 , x 3 ) ) S 3 .

Let

φ { Gal ( L ) Gal ( ( x 1 , x 2 , x 3 ) ) × Gal ( ( ω ) ) σ ( σ | ( x 1 , x 2 , x 3 ) , σ | ( ω ) ) .

Then φ is a group homomorphism, and the kernel of φ is { id } , since every -automorphism of L which fixes ω , x 1 , x 2 , x 3 is the identity of L . So φ is injective, and | Gal ( L ) | = | Gal ( ( ω ) ) × Gal ( ( x 1 , x 2 , x 3 ) ) | = 12 , thefore φ is a group isomorphism.

Gal ( L ) C 2 × S 3 .

If we choose the numbering x 1 , x 2 , x 3 , x 4 = ω , x 5 = ω 2 of the roots of f , then the Galois group G of f is

G = Gal ( f ) = ( 1 2 ) , ( 1 2 3 ) , ( 4 5 ) S 3 × C 2 .

(b)
     R.<x> = QQ[]
     f = x^5 + 20 *x + 16;f

x 5 + 20 x + 16

     f.is_irreducible()

True

     theta = resolvent(f)[0]; theta.subs(Delta = f.discriminant()).expand()

y 6 800 y 5 + 352000 y 4 71680000 y 3 + 7168000000 y 2 557056000000 y + 6553600000000

     res = rational_root(theta); res

(False, None)

     f.discriminant().factor(),f.discriminant().is_square()

( 2 16 5 6 , True )

Thus the Galois group of f = x 5 + 20 x + 16 over is A 5 .

Verification:

     f.galois_group().gens()

( 3 , 4 , 5 ) , ( 1 , 2 , 3 , 4 , 5 )

(c)
     R.<x> = QQ[]
     f = x^5 + 2;f

x 5 + 2

     f.is_irreducible()

True

     theta = resolvent(f)[0]; theta.subs(Delta = f.discriminant()).expand()

y 6 51200000 y

     res = rational_root(theta); res

(True, 0)

     f.discriminant().factor(),f.discriminant().is_square()

( 2 4 5 5 , False )

Thus the Galois group of f = x 5 + 2 over is AGL ( 1 , 𝔽 5 ) , up to conjugacy.

Verification:

     f.galois_group().gens()

( 1 , 2 , 3 , 4 , 5 ) , ( 1 , 2 , 4 , 3 )

(d)
     R.<x> = QQ[]
     f = x^5 -5*x + 12;f

x 5 5 x + 12

     f.is_irreducible()

True

     theta = resolvent(f)[0]; theta.subs(Delta = f.discriminant()).expand()

y 6 + 200 y 5 + 22000 y 4 + 1120000 y 3 + 28000000 y 2 66016000000 y + 1600000000

     res = rational_root(theta); res

(True, 100)

     f.discriminant().factor(),f.discriminant().is_square()

( 2 12 5 6 , True )

     K.<alpha> = NumberField(f)
     S.<X> = K[]
     g = f.change_ring(S)
     g.factor()

( x α ) ( x 2 + ( 1 4 α 4 + 1 4 α 3 + 1 4 α 2 + 1 4 α 1 ) x 1 2 α 3 1 2 α 1 ) ( x 2 + ( 1 4 α 4 1 4 α 3 1 4 α 2 + 3 4 α + 1 ) x 1 4 α 4 1 4 α 3 1 4 α 2 5 4 α + 2 )

Thus the Galois group of f = x 5 + 20 x + 16 over is AGL ( 1 , 𝔽 5 ) A 5 , up to conjugacy.

Verification:

     f.galois_group().gens()

( 1 , 2 , 3 , 4 , 5 ) , ( 1 , 4 ) ( 2 , 3 )

(e)
     R.<x> = QQ[]
     f = x^5 + x^4 - 4*x^3 - 3*x^2 + 3*x + 1
     f

x 5 + x 4 4 x 3 3 x 2 + 3 x + 1

     f.is_irreducible()

True

     theta = resolvent(f)[0]; theta.subs(Delta = f.discriminant()).expand()

y 6 264 y 5 + 25168 y 4 1022208 y 3 + 14992384 y 2 14992384 y

     res = rational_root(theta); res

(True, 0)

     f.discriminant().factor(),f.discriminant().is_square()

( 1 1 4 , True )

     K.<alpha> = NumberField(f)
     S.<X> = K[]
     g = f.change_ring(S)
     g.factor()

( x α ) ( x α 2 + 2 ) ( x + α 4 + α 3 3 α 2 2 α + 1 ) ( x α 3 + 3 α ) ( x α 4 + 4 α 2 2 )

Thus the Galois group of f = x 5 + 20 x + 16 over is ( 1 2 3 4 5 ) , up to conjugacy.

Verification:

     f.galois_group().gens()

( 1 , 2 , 3 , 4 , 5 )

User profile picture
2022-07-19 00:00
Comments