Exercise 13.2.20

In the Mathematical Notes to Section 10.3, we noted that the roots of the polynomial x 5 4 x 4 + 2 x 3 + 4 x 2 + 2 x 6 [ x ] can be constructed using a marked ruler and compass. Show that this polynomial is not solvable by radicals over .

Answers

Proof. With the same procedures as in Exercise 19, we obtain

R.<x> = QQ[]
f = x^5 - 4*x^4 + 2*x^3 + 4 *x^2 + 2*x -6;f

x 5 4 x 4 + 2 x 3 + 4 x 2 + 2 x 6

f.is_irreducible()

True

theta = resolvent(f)[0]; theta.subs(Delta = f.discriminant()).expand()

y 6 360 y 5 + 47856 y 4 3025152 y 3 + 103474944 y 2 1812875264 y + 14770999296

res = rational_root(theta); res

(False, None)

f.discriminant().factor(),f.discriminant().is_square()

( 1 2 4 4003 , False )

So the Galois group of f is S 5 , and f is not solvable by radicals over .

Verification:

f.galois_group().gens()

( 1 , 2 ) , ( 1 , 2 , 3 , 4 , 5 )

0.1 Resolvents

User profile picture
2022-07-19 00:00
Comments