Exercise 13.2.4

Prove that (13.19) gives coset representatives of AGL ( 1 , 𝔽 5 ) in S 5 .

Answers

Proof. As the index ( S 5 : AGL ( 1 , 𝔽 5 ) ) = 120 20 = 6 , it is sufficient to verify that the 6 permutations

S = { e , ( 1 2 3 ) , ( 2 3 4 ) , ( 3 4 5 ) , ( 1 4 5 ) , ( 1 2 5 ) }

are in distinct coset, by verifying that the 15 permutations u v 1 AGL ( 1 , 𝔽 5 ) , where

u , v S , u v .

AGL ( 1 , 𝔽 5 ) = { e , ( 1 , 2 , 4 , 3 ) , ( 1 , 2 , 3 , 4 , 5 ) , ( 1 , 3 , 5 , 2 , 4 ) , ( 1 , 4 , 5 , 2 ) , ( 1 , 3 , 2 , 5 ) , ( 1 , 4 ) ( 2 , 3 ) , ( 1 , 4 , 2 , 5 , 3 ) , ( 2 , 5 ) ( 3 , 4 ) , ( 1 , 5 , 3 , 4 ) , ( 2 , 3 , 5 , 4 ) , ( 1 , 3 ) ( 4 , 5 ) , ( 1 , 3 , 4 , 2 ) , ( 1 , 5 ) ( 2 , 4 ) , ( 1 , 2 ) ( 3 , 5 ) , ( 1 , 5 , 4 , 3 , 2 ) , ( 2 , 4 , 5 , 3 ) , ( 1 , 4 , 3 , 5 ) , ( 1 , 2 , 5 , 4 ) , ( 1 , 5 , 2 , 3 ) }

{ u v 1 | u S , v S , u v } = { ( 1 , 3 , 2 ) , ( 2 , 4 , 3 ) , ( 3 , 5 , 4 ) , ( 1 , 5 , 4 ) , ( 1 , 5 , 2 ) , ( 1 , 2 , 3 , 5 , 4 ) , ( 2 , 3 , 5 ) , ( 1 , 3 , 4 ) , ( 1 , 5 , 4 , 2 , 3 ) , ( 1 , 5 , 2 , 3 , 4 ) , ( 1 , 3 , 4 , 5 , 2 ) , ( 2 , 4 , 5 ) , ( 1 , 5 , 3 ) , ( 1 , 5 , 3 , 4 , 2 ) , ( 1 , 2 , 4 ) }

Sage instructions

S5 = SymmetricGroup(5)
a = S5([(1,2,3,4,5)])
b = S5([(1,2,4,3)])
G = PermutationGroup([a,b])
l =  [S5([]),S5([(1,2,3)]),S5([(2,3,4)]),S5([(3,4,5)]),S5([(1,4,5)]),S5([(1,2,5)])]
[u*v^(-1) in G for u in l for v in l if u< v]

[False, False, …, False]

So S is a set of coset representatives of AGL ( 1 , 𝔽 5 ) in S 5 . □

User profile picture
2022-07-19 00:00
Comments