Exercise 13.2.6

In this exercise, you will use Maple or Mathematica (or Sage!), to prove (13.23) and (13.24).

(a)
The first step is to enter (13.17) and call it, for example u 1 . Then use substitution commands and (13.19) to create u 2 , u 6 . For example, u 2 is obtained by applying ( 1 2 3 ) to u 1 . In Maple, this is done via the command
                u2 := subs({x1=x2,x2=x3,x3=x1},u1);

whereas in Mathematica one uses

                u2 := u1 /. {x1->x2,x2->x3,x3->x1}

(b)
Now multiply out Θ ( y ) = ( y u 1 ) ( y u 6 ) and use the methods of section 2.3 to express the coefficients of Θ ( y ) in terms of the elementary symmetric polynomials.
(c)
Show that your results imply (13.23) and (13.24).

Answers

Proof. Sage instructions :

R.<y,x,x1,x2,x3,x4,x5,y1,y2,y3,y4,y5> = PolynomialRing(QQ, order = ’degrevlex’)
elt = SymmetricFunctions(QQ).e()
e = [elt([i]).expand(5).subs(x0=x1, x1=x2, x2=x3, x3 = x4, x4 = x5)
               for i in range(6)]
J = R.ideal(e[1]-y1, e[2]-y2, e[3]-y3,e[4]-y4,e[5]-y5)
G = J.groebner_basis()
u1 =x1*x2 + x2*x3 + x3*x4 + x4*x5 + x5*x1 - x1*x3 - x3*x5 -x5*x2 - x2*x4 -x4*x1
u2 = u1.subs(x1 = x2, x2 = x3, x3 = x1)
u3 = u1.subs(x2 = x3, x3 = x4, x4 = x2)
u4 = u1.subs(x3 = x4, x4 = x5, x5 = x3)
u5 = u1.subs(x1 = x4, x4 = x5, x5 = x1)
u6 = u1.subs(x1 = x2, x2 = x5, x5 = x1)
f1 = (y-u1) * (y-u2) * (y-u3) * (y-u4) * (y-u5) * (y-u6)
var(’sigma_1,sigma_2,sigma_3,sigma_4,sigma_5’)
g = f1.reduce(G).subs(y1=sigma_1, y2=sigma_2, y3=sigma_3, y4=sigma_4, y5= sigma_5)
h = g.collect(y);

Now we can verify (13.23) and (13.24):

h.coefficient(y^5),h.coefficient(y^3)

( 0 , 0 )

B2 = h.coefficient(y^4); B2

3 σ 2 2 + 8 σ 1 σ 3 20 σ 4

B4 = h.coefficient(y^2); B4

3 σ 2 4 16 σ 1 σ 2 2 σ 3 + 16 σ 1 2 σ 3 2 + 16 σ 1 2 σ 2 σ 4 64 σ 1 3 σ 5 + 16 σ 2 σ 3 2 8 σ 2 2 σ 4 112 σ 1 σ 3 σ 4 + 240 σ 1 σ 2 σ 5 + 240 σ 4 2 400 σ 3 σ 5
B6 = h.subs(y = 0);B6

σ 2 6 + 8 σ 1 σ 2 4 σ 3 16 σ 1 2 σ 2 2 σ 3 2 16 σ 1 2 σ 2 3 σ 4 + 64 σ 1 3 σ 2 σ 3 σ 4 64 σ 1 4 σ 4 2 16 σ 2 3 σ 3 2 + 64 σ 1 σ 2 σ 3 3 + 28 σ 2 4 σ 4 112 σ 1 σ 2 2 σ 3 σ 4 128 σ 1 2 σ 3 2 σ 4 + 224 σ 1 2 σ 2 σ 4 2 + 48 σ 1 σ 2 3 σ 5 192 σ 1 2 σ 2 σ 3 σ 5 + 384 σ 1 3 σ 4 σ 5 64 σ 3 4 + 224 σ 2 σ 3 2 σ 4 176 σ 2 2 σ 4 2 64 σ 1 σ 3 σ 4 2 80 σ 2 2 σ 3 σ 5 + 640 σ 1 σ 3 2 σ 5 640 σ 1 σ 2 σ 4 σ 5 1600 σ 1 2 σ 5 2 + 320 σ 4 3 1600 σ 3 σ 4 σ 5 + 4000 σ 2 σ 5 2

The coefficient c 1 of y in h = Θ ( y ) is not symmetric in x 1 , , x 5 , but we verify that c 1 = 2 5 Δ y , computing first Δ :

c1  = f1.coefficient(y)
x = [1,x1,x2,x3,x4,x5]
sqrtDelta = 1
for i in range(1,6):
    for j in range(i+1,6):
        sqrtDelta *= (x[i] -x[j])
sqrtDelta
c1 + 2^5 * sqrtDelta

0

So (13.23) and (13.24) are verified. □

User profile picture
2022-07-19 00:00
Comments