Exercise 13.2.9

This exercise will prove the first equivalence of Proposition 13.2.7.

(a)
First suppose that 𝜃 f ( y ) is irreducible. Prove that | G | is divisible by 6, and explain why this implies that A 5 G .
(b)
Now suppose that A 5 G . Prove that Gal ( L F ) acts transitively on β 1 , , β 6 . However, we don’t know that β 1 , , β 6 are distinct.
(c)
Let p ( y ) be the minimal polynomial of β 1 over F . By part (b), it is also the minimal polynomial of β 2 , , β 6 . Prove that 𝜃 f ( y ) = p ( y ) m , where m = 1 , 2 , 3 , or 6 . The proof of Theorem 13.2.6 shows that m = 6 cannot occur, and m = 1 implies that 𝜃 f ( y ) is irreducible over F . It remains to consider what happens when m = 2 or 3 .
(d)
Show that ( y 3 + a y 2 + by + c ) 2 = 𝜃 f ( y ) implies that Δ ( f ) = 0 . Hence this case can’t occur.
(e)
Show that ( y 2 + ay + b ) 3 = 𝜃 f ( y ) implies that 4 b = a 2 , and then use this to show that Δ ( f ) = 0 .

Answers

Proof.

(a)
Suppose that 𝜃 f ( y ) = i = 1 6 ( y β i ) is irreducible over F . Then 𝜃 f ( y ) is the minimal polynomial of β 1 = h ( α 1 , α 2 , α 3 , α 4 , α 5 ) over F . Therefore [ F ( β 1 ) : F ] = deg 𝜃 f ( y ) = 6 .

Since β 1 = h ( α 1 , α 2 , α 3 , α 4 , α 5 ) F ( α 1 , α 2 , α 3 , α 4 , α 5 ) = L ,

F F ( β 1 ) F ( α 1 , α 2 , α 3 , α 4 , α 5 ) = L .

By the Tower Theorem,

[ F ( β 1 ) : F ] [ L : F ] ,

therefore

6 [ L : F ] = | Gal ( L F ) | = | G | .

Since 6 | AGL ( 1 , 𝔽 5 ) | = 20 , G is not a subgroup of AGL ( 1 , 𝔽 5 ) . By Theorem 13.2.2, since G is a transitive subgroup of S 5 , G = A 5 or G = S 5 :

A 5 G .

(b)
Now suppose that A 5 G . Then G { τ 1 , , τ 6 } = { e , ( 1 2 3 ) , ( 2 3 4 ) , ( 3 4 5 ) , ( 1 4 5 ) , ( 1 2 5 ) } ,

so τ i G and the corresponding σ i are in Gal ( L F ) . By Exercise 13.2.5, σ i ( β 1 ) = β i , thus the orbit of β 1 under the action of Gal ( L F ) is O β 1 = { β 1 , , β 6 } . This is sufficient to prove that Gal ( L F ) acts transitively on β 1 , , β 6 .

(c)
Let p ( y ) be the minimal polynomial of β 1 over F . There exists σ i Gal ( L F ) such that σ i ( β 1 ) = β i , and since p ( y ) F [ y ] , 0 = σ i ( p ( β 1 ) ) = p ( σ i ( β 1 ) ) = p ( β i ) , so β i is a root of p , where p is irreducible. Therefore p is the minimal polynomial over F of β 1 , , β 6 .

Under the hypothesis of Theorem 13.2.7 (and 13.2.6), F L is a separable extension, so β 1 is separable, therefore

p ( x ) = ( x γ 1 ) ( x γ r ) ,

where γ 1 , , γ r are distinct. Since p is the minimal polynomial over F of β 1 , , β 6 , each β j is a γ i for some i , 1 i r , and since p ( y ) divides 𝜃 f ( y ) , each γ i is a β j , so { γ 1 , , γ r } = { β 1 , , β 6 } , and γ 1 , , γ r are the distinct roots of 𝜃 f ( y ) .

Let k i the order of multiplicity of β i in 𝜃 f ( y ) , so 𝜃 f ( y ) = ( y β i ) k i q i ( y ) , q i ( y ) L [ y ] . Let σ Gal ( L F ) such that σ ( β i ) = β j . Applying σ to 𝜃 f ( y ) , we obtain 𝜃 f ( y ) = ( y β j ) k i ( σ q i ) ( y ) , so k j k i , and similarly k i k j , so the distinct γ i have the same order of multiplicity m in 𝜃 f ( y ) . Therefore

𝜃 f ( y ) = ( x γ 1 ) m ( x γ r ) m = p ( y ) m .

Since 6 = deg ( 𝜃 f ( y ) ) = m deg ( p ( y ) ) , m 6 , so m = 1 , 2 , 3 or 6 .

m = 6 gives 𝜃 f ( y ) = ( x β 1 ) 6 . Since the characteristic of f is not 2, this is impossible by the proof of Theorem 13.2.6. It remains to prove the impossibility of m = 2 or m = 3 .

(d)
If m = 2 , 𝜃 f ( y ) = ( y 3 + a y 2 + by + c ) 2 , a , b , c F .

By Proposition 13.2.5, this gives

( y 3 + b 2 y 2 + b 4 y + b 6 ) 2 2 10 Δ ( f ) y = ( y 3 + a y 2 + by + c ) 2 ,

so

2 10 Δ ( f ) y = ( y 3 + b 2 y 2 + b 4 y + b 6 ) 2 ( y 3 + a y 2 + by + c ) 2 = [ ( b 2 a ) y 2 + ( b 4 b ) y + ( b 6 c ) ] [ 2 y 3 + ( b 2 + a ) y 2 + ( b 4 + b ) y + ( b 6 + c ) ]

Therefore the coefficient in y 5 is 2 ( b 2 a ) = 0 . Since the characteristic is not 2,

b 2 = a .

Using b 2 = a , the coefficient in y 4 is 2 ( b 4 b ) = 0 , so

b 4 = b ,

and then the coefficient in y 3 is 2 ( b 6 c ) , so

b 6 = c .

Therefore 2 10 Δ ( f ) y = 0 . Since the characteristic is not 2, Δ ( f ) = 0 , in contradiction with the assumed separability of f .

(e)
If m = 3 , there exist coefficients a , b F such that 𝜃 f ( y ) = ( y 2 + ay + b ) 3 = ( y 3 + b 2 y 2 + b 4 y + b 6 ) 2 2 10 Δ ( f ) y .

0 = 𝜃 f ( y ) ( y 2 + ax + b ) 3 = ( 3 a 2 b 2 ) y 5 ( 3 a 2 b 2 2 + 3 b 2 b 4 ) y 4 ( a 3 + 6 ab 2 b 2 b 4 2 b 6 ) y 3 ( 3 a 2 b + 3 b 2 b 4 2 2 b 2 b 6 ) y 2 ( 3 a b 2 2 b 4 b 6 + 1024 Δ ( f ) ) y b 3 + b 6 2 .

We obtain b 2 , b 4 , b 6 with the equations corresponding to the coefficients of y 5 , y 4 , y 3 :

{ 0 = 3 a + 2 b 2 , 0 = 3 a 2 + b 2 2 3 b + 2 b 4 , 0 = a 3 6 ab + 2 b 2 b 4 + 2 b 6 ,

which gives

b 2 = 3 2 a , b 4 = 3 8 a 2 + 3 2 b , b 6 = 1 16 a 3 + 3 4 ab .

If we substitute these values in the coefficient of y 3 , we obtain

a 3 + 6 ab 2 b 2 b 4 2 b 6 = a 3 + 6 ab 2 ( 3 2 a ) ( 3 8 a 2 + 3 2 b ) + 2 ( 1 16 a 3 + 3 4 ab ) = 0 .

The coefficient of y 2 gives 3 64 ( a 4 8 a 2 b + 16 b 2 ) = 3 64 ( a 2 4 b ) 2 = 0 .

If we suppose that the characteristic is not 3 , then

a 2 = 4 b .

The coefficient of y gives

0 = 3 64 a 5 + 3 8 a 3 b 3 4 a b 2 2 10 Δ ( f ) = 3 64 a ( a 2 4 b ) 2 2 10 Δ ( f ) = 2 10 Δ ( f )

Therefore

Δ ( f ) = 0 .

Since f is separable, this is a contradiction, so 𝜃 f ( y ) is irreducible.

It remains the case where the characteristic is 3. Then the equation

𝜃 f ( y ) = ( y 2 + ay + b ) 3 = ( y 3 + b 2 y 2 + b 4 y + b 6 ) 2 2 10 Δ ( f ) y

gives the system

{ 0 = 2 b 2 , 0 = b 2 2 + 2 b 4 , 0 = a 3 + 2 b 2 b 4 + 2 b 6 ,

Therefore b 2 = b 4 = 0 , so the initial equation gives

y 6 + a 3 y 3 + b 3 = y 6 + 2 b 6 y 3 2 10 Δ ( f ) y + b 6 2 ,

and we have the same contradiction Δ ( f ) = 0 , and the same conclusion:

𝜃 f ( y ) is irreducible over F .

We give here the corresponding Sage instructions:

     y,b2,b4,b6,Delta,a,b,c = var(’y,b2,b4,b6,Delta,a,b,c’)
     u = (y^3+b2*y^2+b4*y+b6)^2 - 2^10*Delta*y - (y^2+a*y+b)^3
     u = u.expand().collect(y); u

( 3 a 2 b 2 ) y 5 ( 3 a 2 b 2 2 + 3 b 2 b 4 ) y 4 ( a 3 + 6 ab 2 b 2 b 4 2 b 6 ) y 3 b 3

( 3 a 2 b + 3 b 2 b 4 2 2 b 2 b 6 ) y 2 + b 6 2 ( 3 a b 2 2 b 4 b 6 + 1024 Δ ) y

     eq = [u.coefficient(y^i) for i in range(3,6)]
     solve(eq,b2,b4,b6)

[ [ b 2 = 3 2 a , b 4 = 3 8 a 2 + 3 2 b , b 6 = 1 16 a 3 + 3 4 ab ] ]

     v = u.coefficient(y^3)
     w = v.subs(b2 == 3/2*a, b4 == 3/8*a^2 + 3/2*b, b6 == -1/16*a^3 + 3/4*a*b)
     w.expand()

0

     s = u.coefficient(y^2)
     t = s.subs(b2 == 3/2*a, b4 == 3/8*a^2 + 3/2*b, b6 == -1/16*a^3 + 3/4*a*b)
     t.expand().factor()

3 64 ( a 2 4 b ) 2

     p = u.coefficient(y)
     q = p.subs(b2 == 3/2*a, b4 == 3/8*a^2 + 3/2*b, b6 == -1/16*a^3 + 3/4*a*b)
     q.expand()

3 64 a 5 + 3 8 a 3 b 3 4 a b 2 1024 Δ

     q.expand().subs(b = a^2/4)

1024 Δ

We obtained Δ ( f ) = 0 .

User profile picture
2022-07-19 00:00
Comments