Exercise 13.3.15

Let f = x 3 c 1 x 2 + c 2 x c 3 F [ x ] and let D f ( y ) F [ y ] be as in the previous exercise.

(a)
Show that D f ( y ) = y 2 ( c 1 c 2 3 c 3 ) y + c 2 3 + c 1 3 c 3 6 c 1 c 2 c 3 + 9 c 3 2 .
(b)
Assume in addition that f is separable and irreducible. Explain how D f ( y ) determines Galois group of f up to isomorphism.

Proof.

(a)
By (2.26), we obtain Δ ( f ) = 4 c 2 3 27 c 3 2 + c 1 2 c 2 2 4 c 1 3 c 3 + 18 c 1 c 2 c 3 ,

and by Ex.2.2.10,

D + D = σ A 3 σ x 1 2 x 2 + ( 12 ) σ A 3 σ x 1 2 x 2 = σ S 3 σ x 1 2 x 2 = σ 1 σ 2 3 σ 3 ,

so that

D ( f ) + D ( f ) = c 1 c 2 3 c 3 .

(Note: If the characteristic is not 2, we could write

D ( f ) = 1 2 ( D ( f ) + D ( f ) + ( D ( f ) D ( f ) ) = 1 2 ( c 1 c 2 3 c 3 ± Δ ( f ) ) ,

and compute D ( f ) D ( f ) , but here we compute in all characteristic.)

But D D is symmetric, where

D D = ( σ A 3 σ x 1 2 x 2 ) ( σ A 3 ( τσ ) x 1 2 x 2 ) = ( x 1 2 x 2 + x 2 2 x 3 + x 3 2 x 1 ) ( x 2 2 x 1 + x 1 2 x 3 + x 3 2 x 2 ) = x 1 3 x 2 3 + x 1 4 x 2 x 3 + x 1 x 2 4 x 3 + 3 x 1 2 x 2 2 x 3 2 + x 1 3 x 3 3 + x 2 3 x 3 3 + x 1 x 2 x 3 4

With the usual Sage instructions, we obtain D ( f ) D ( f )

     R.<x1,x2,x3,y1,y2,y3> = PolynomialRing(QQ, order = ’degrevlex’)
     elt = SymmetricFunctions(QQ).e()
     e = [elt([i]).expand(3).subs(x0=x1, x1=x2, x2=x3) for i in range(4)]
     J = R.ideal(e[1]-y1, e[2]-y2, e[3]-y3)
     G = J.groebner_basis()
     f = (x1^2*x2+x2^2*x3+x3^2*x1)*(x2^2*x1+x1^2*x3+x3^2*x2)
     var(’sigma_1,sigma_2,sigma_3’)
     var(’c1,c2,c3’)
     g=f.reduce(G).subs(y1=c1,y2=c2,y3=c3)
     g

c 1 3 c 3 + c 2 3 6 c 1 c 2 c 3 + 9 c 3 2

Then

D ( f ) D ( f ) = c 2 3 + c 1 3 c 3 6 c 1 c 2 c 3 + 9 c 3 2

and

D f ( y ) = y 2 ( D ( f ) + D ( f ) ) y + D ( f ) D ( f ) = y 2 ( c 1 c 2 3 c 3 ) y + c 2 3 + c 1 3 c 3 6 c 1 c 2 c 3 + 9 c 3 2
(b)
By Ex.6.2.6, f being irreducible and separable, we know that 3 | G f | . Therefore G f = A 3 or G f = S 3 . Then Ex.14(d) proves that G f = A 3 D f ( y )  splits over  F , G f = S 3 D f ( y )  is irreducible over  F .

Answers

0.1 Other Methods

User profile picture
2022-07-19 00:00
Comments