Exercise 13.3.4

As in Examples 13.3.3 and 13.3.4, let φ = Δ ( x 1 + x 2 x 3 x 4 ) .

(a)
Show that the symmetry group of φ is G = ( 1324 ) S 4 in characteristic 2 .
(b)
Show that in the universal case, φ leads to the resolvent Θ ( y ) = i = 1 3 ( y 2 Δ ( 4 y i + σ 1 2 4 σ 2 ) ) ,

where y 1 = x 1 x 2 + x 3 x 4 , y 2 = x 1 x 3 + x 2 x 4 , y 3 = x 1 x 4 + x 2 x 3 are the roots of the universal Ferrari resolvent 𝜃 ( y ) .

(c)
Let Θ f ( y ) be obtained by specializing the resolvent Θ ( y ) of part (b) to f = x 4 + b x 2 + d . Show that Θ f ( y ) = y 2 ( ( y 2 + 4 b Δ ( f ) ) 2 2 6 d Δ ( f ) 2 ) .

Answers

Proof. (a) Write H ( φ ) the symmetry group of φ = Δ ( x 1 + x 2 x 3 x 4 ) .

Since ( 1 3 2 4 ) is an odd permutation, ( 1 3 2 4 ) Δ = Δ , so

( 1 3 2 4 ) φ = Δ ( x 3 + x 4 x 2 x 1 ) = φ .

Therefore

( 1 3 2 4 ) H ( φ ) .

To prove the converse, we show that the orbit O φ of φ under the action of S n contains at least 6 elements.

σ σ ( x 1 + x 2 x 3 x 4 ) σ φ ( ) x 1 + x 2 x 3 x 4 Δ ( x 1 + x 2 x 3 x 4 ) ( 3 4 ) x 1 + x 2 x 3 x 4 Δ ( x 1 x 2 + x 3 + x 4 ) ( 2 3 ) x 1 x 2 + x 3 x 4 Δ ( x 1 + x 2 x 3 + x 4 ) ( 1 4 ) x 1 + x 2 x 3 + x 4 Δ ( x 1 x 2 + x 3 x 4 ) ( 1 3 ) x 1 + x 2 + x 3 x 4 Δ ( x 1 x 2 x 3 + x 4 ) ( 2 4 ) x 1 x 2 x 3 + x 4 Δ ( x 1 + x 2 + x 3 x 4 )

Since the six elements in the right column are distinct (if the characteristic is not 2), we see that | O φ | 6 .

The stabilizer G φ of φ in S n is H ( φ ) , which contains ( 1 3 2 4 ) , therefore | G φ | 4 , and | O φ | = | S n | | G φ | 24 4 = 6 , so | O φ | = 6 and | H ( φ ) | = | G φ | = 4 , thus

( 1 3 2 4 ) H ( φ ) ,

and the orbit of φ under S 4 is given by O φ = { φ 0 = φ , φ 1 , , φ 5 } , where

φ 0 = ( ) φ = Δ ( x 1 + x 2 x 3 x 4 ) , φ 1 = ( 3 4 ) φ = Δ ( x 1 x 2 + x 3 + x 4 ) , φ 2 = ( 2 3 ) φ = Δ ( x 1 + x 2 x 3 + x 4 ) , φ 3 = ( 1 4 ) φ = Δ ( x 1 x 2 + x 3 x 4 ) , φ 4 = ( 1 3 ) φ = Δ ( x 1 x 2 x 3 + x 4 ) , φ 5 = ( 2 4 ) φ = Δ ( x 1 + x 2 + x 3 x 4 ) . (b) Since φ 1 = φ 0 , φ 3 = φ 2 , φ 5 = φ 4 , Θ ( y ) = ψ O φ ( y ψ ) = i = 0 5 ( y φ i ) = ( y 2 φ 0 2 ) ( y 2 φ 2 2 ) ( y 2 φ 4 2 ) .

Moreover,

φ 0 2 = Δ ( x 1 + x 2 x 3 x 4 ) 2 ,

where

( x 1 + x 2 x 3 x 4 ) 2 = ( x 1 + x 2 ) 2 + ( x 3 + x 4 ) 2 2 ( x 1 + x 2 ) ( x 3 + x 4 ) = ( x 1 + x 2 + x 3 + x 4 ) 2 4 ( x 1 + x 2 ) ( x 3 + x 4 ) = ( x 1 + x 2 + x 3 + x 4 ) 2 4 ( x 1 x 3 + x 1 x 4 + x 2 x 3 + x 2 x 4 ) = 4 ( x 1 x 2 + x 3 x 4 ) + ( x 1 + x 2 + x 3 + x 4 ) 2 4 ( x 1 x 2 + x 1 x 3 + x 1 x 4 + x 2 x 3 + x 2 x 4 + x 3 x 4 ) = 4 y 1 + σ 1 2 4 σ 2 .

Thus

( y φ 0 ) 2 = y 2 Δ ( 4 y 1 + σ 1 2 4 σ 2 ) ,

where y 1 = x 1 x 2 + x 3 x 4 .

If we apply the permutation ( 2 3 ) on this equality, we obtain

( y φ 2 ) 2 = y 2 Δ ( 4 y 2 + σ 1 2 4 σ 2 ) ,

where y 2 = x 2 x 4 + x 1 x 3 .

If we apply the permutation ( 1 3 ) on the same equality, we obtain

( y φ 4 ) 2 = y 2 Δ ( 4 y 3 + σ 1 2 4 σ 2 ) ,

where y 3 = x 4 x 1 + x 3 x 2 .

Finally,

Θ ( y ) = i = 1 3 ( y 2 Δ ( 4 y i + σ 1 2 4 σ 2 ) ) ,

where y 1 = x 1 x 2 + x 3 x 4 , y 2 = x 1 x 3 + x 2 x 4 , y 3 = x 1 x 4 + x 2 x 3 are the roots of the universal Ferrari resolvent 𝜃 ( y ) . (c) Let Θ f ( y ) is obtained by specializing the resolvent Θ ( y ) of part (b) to f = x 4 + b x 2 + d . Then x i maps to the root α i , i = 1 , , 4 , σ 1 maps to 0 , σ 2 to b , Δ to Δ ( f ) , and y i to β i ,where

β 1 = α 1 α 2 + α 3 α 4 , β 2 = α 2 α 4 + α 1 α 3 , β 3 = α 4 α 1 + α 3 α 2

are the roots of the Ferrari resolvent of x 4 + b x 2 + d .

We obtain

Θ f ( y ) = i = 1 3 ( y 2 Δ ( f ) ( 4 β i 4 b ) ) = i = 1 3 ( y 2 + 4 b Δ ( f ) 4 Δ ( f ) β i )

If we write for simplicity

u = y 2 + 4 b Δ ( f ) , v = 4 Δ ( f ) 0 ,

then

Θ f ( y ) = i = 1 3 ( u v β i ) = v 3 i = 1 3 ( u v β i ) .

We know from Exercise 13.1.10 that the Ferrari resolvent of x 4 + b x 2 + d is

Θ f ( y ) = ( y β 1 ) ( y β 2 ) ( y β 3 ) = ( y b ) ( y 2 4 d ) .

The substitution y u v gives

Θ f ( y ) = v 3 ( u v β 1 ) ( u v β 2 ) ( u v β 3 ) = v 3 ( u v b ) ( u 2 v 2 4 d ) = ( u bv ) ( u 2 4 d v 2 ) = y 2 ( ( y 2 + 4 b Δ ( f ) ) 2 4 d ( 4 Δ ( f ) ) 2 ) = y 2 ( ( y 2 + 4 b Δ ( f ) ) 2 2 6 d Δ ( f ) 2 ) .
User profile picture
2022-07-19 00:00
Comments