Exercise 13.3.6

Let D = σ A 4 σ x 1 3 x 2 2 x 3 F [ x 1 , x 2 , x 3 , x 4 ] .

(a)
Prove that D = 1 2 ( σ 1 σ 2 σ 3 3 σ 1 2 σ 4 3 σ 3 2 + 4 σ 2 σ 4 ) + 1 2 Δ in characteristic 2 .
(b)
Prove that Δ = D ( 12 ) D in all characteristics.

Proof. (a) Since

σ S 4 σ = σ A 4 σ + σ S 4 A 4 σ = σ A 4 σ + ( 12 ) σ A 4 σ

and based on results of Ex.2.2.3, we have:

σ S 4 σ x 1 3 x 2 2 x 3 = D + ( 12 ) D = σ 1 σ 2 σ 3 3 σ 1 2 σ 4 3 σ 3 2 + 4 σ 2 σ 4

Sage verification:

    R.<x1,x2,x3,x4,y1,y2,y3,y4> = PolynomialRing(QQ, order = ’degrevlex’)
    elt = SymmetricFunctions(QQ).e()
    e = [elt([i]).expand(4).subs(x0=x1, x1=x2, x2=x3, x3 = x4) for i in range(5)]
    J = R.ideal(e[1]-y1, e[2]-y2, e[3]-y3,e[4]-y4)
    G = J.groebner_basis()
    D = x1^3*x2^2*x3;
    D=D+D.subs(x1=x3,x2=x4,x3=x1)+D.subs(x1=x2,x2=x1,x3=x4)+D.subs(x1=x4,x2=x3,x3=x2)
    D=D+D.subs(x1=x2,x2=x3,x3=x1)+D.subs(x1=x2,x2=x3,x3=x1).subs(x1=x2,x2=x3,x3=x1)
    u=D+D.subs(x1=x2,x2=x1)
    var(’sigma_1,sigma_2,sigma_3,sigma_4’)
    u.reduce(G).subs(y1=sigma_1, y2 = sigma_2,y3=sigma_3,y4=sigma_4)

σ 1 σ 2 σ 3 3 σ 1 2 σ 4 3 σ 3 2 + 4 σ 2 σ 4

Assuming that D ( 12 ) D = Δ is valid, then 2 D 0 in characteristic 2 and

2 D = 2 ( 1 2 ( σ 1 σ 2 σ 3 3 σ 1 2 σ 4 3 σ 3 2 + 4 σ 2 σ 4 ) + 1 2 Δ ) .

(b) We use Sage to prove that D ( 12 ) D Δ = 0 :

    Delta = (x1-x2)*(x1-x3)*(x1-x4)*(x2-x3)*(x2-x4)*(x3-x4)
    D-D.subs(x1=x2,x2=x1)-Delta==0

True

Hence in all characteristics

Δ = D ( 12 ) D .

Answers

User profile picture
2022-07-19 00:00
Comments