Homepage › Solution manuals › David A. Cox › Galois Theory › Exercise 13.3.6
Exercise 13.3.6
Let .
- (a)
- Prove that in characteristic .
- (b)
- Prove that in all characteristics.
Proof. (a) Since
and based on results of Ex.2.2.3, we have:
Sage verification:
R.<x1,x2,x3,x4,y1,y2,y3,y4> = PolynomialRing(QQ, order = ’degrevlex’) elt = SymmetricFunctions(QQ).e() e = [elt([i]).expand(4).subs(x0=x1, x1=x2, x2=x3, x3 = x4) for i in range(5)] J = R.ideal(e[1]-y1, e[2]-y2, e[3]-y3,e[4]-y4) G = J.groebner_basis() D = x1^3*x2^2*x3; D=D+D.subs(x1=x3,x2=x4,x3=x1)+D.subs(x1=x2,x2=x1,x3=x4)+D.subs(x1=x4,x2=x3,x3=x2) D=D+D.subs(x1=x2,x2=x3,x3=x1)+D.subs(x1=x2,x2=x3,x3=x1).subs(x1=x2,x2=x3,x3=x1) u=D+D.subs(x1=x2,x2=x1) var(’sigma_1,sigma_2,sigma_3,sigma_4’) u.reduce(G).subs(y1=sigma_1, y2 = sigma_2,y3=sigma_3,y4=sigma_4)
Assuming that is valid, then in characteristic and
(b) We use Sage to prove that :
Delta = (x1-x2)*(x1-x3)*(x1-x4)*(x2-x3)*(x2-x4)*(x3-x4) D-D.subs(x1=x2,x2=x1)-Delta==0
True
Hence in all characteristics
□
Answers
2022-07-19 00:00