Exercise 13.3.7

As in Example 13.3.7, let f = x 4 + ( u + 1 ) x 2 + ux + 1 F [ x ] , where F = 𝔽 2 ( u ) .

(a)
Use Gauss’s Lemma and the Schönemann-Eisenstein criterion to show that f is irreducible over F . (These results apply since 𝔽 2 [ u ] is a PID.)
(b)
Verify the formulas for D f ( y ) and 𝜃 f ( y ) given in Example 13.3.7.
(c)
Show that y 2 + uy + 1 is irreducible over the splitting field of D f ( y ) .

Proof. (a) u is a prime of the PID 𝔽 2 [ u ] , but the reduction modulo u is f ¯ = x 4 + x 2 + 1 , which is not irreducible, since x 4 + x 2 + 1 = ( x 2 + x + 1 ) 2 . Nor the Schönemann-Eisenstein not the reduction modulo u applies here.

We give a direct proof of the irreducibility of f , by proving that f has no factor with degree 1 ou 2. By Gauss’s Lemma, if f has no factorisation in 𝔽 2 [ [ u ] [ x ] , then f is irreducible in 𝔽 2 [ u ] ( x ) .

If f has a factor with degree 1, then f has a root a ( u ) b ( u ) 𝔽 2 ( u ) , where a ( u ) , b ( u ) are relatively prime. Then

a ( u ) 4 + ( u + 1 ) a ( u ) 2 b ( u ) 2 + ua ( u ) b ( u ) 3 + b ( u ) 4 = 0 ,

therefore a b 4 , and a b = 1 , hence a 1 , and similarly b 1 . Thus a , b 𝔽 2 , where a 0 , b 0 , so that a ( u ) = b ( u ) = 1 . But f ( 1 ) = 1 0 , therefore f has no factor with degree 1 in F [ x ] .

If f has a factor with degree 2, then

f = ( a ( u ) x 2 + b ( u ) x + c ( u ) ) ( d ( u ) x 2 + e ( u ) x + f ( u ) ,

where a , b , c , d , e , f are in 𝔽 2 [ u ] . Since a ( u ) d ( u ) = 1 , a ( u ) and d ( u ) are units of 𝔽 2 [ u ] , so are in F 2 , therefore a ( u ) = d ( u ) = 1 , and similarly c ( u ) = f ( u ) = 1 , so that

f = ( x 2 + b ( u ) x + 1 ) ( x 2 + e ( u ) x + 1 ) .

The comparison of the terms in x 3 gives b ( u ) + e ( u ) = 0 , so that

f = ( x 2 + b ( u ) x + 1 ) ( x 2 b ( u ) x + 1 ) = ( x 2 + 1 ) 2 b ( u ) 2 x 2 = x 4 b ( u ) 2 x 2 + 1 .

This is a contradiction, since f has a nonzero term ux , u 0 . Therefore f is irreducible over F .

Sage verification:

F = Frac(GF(2)[’u’]); u = F.gen()
f = x^4 + (u+1)*x^2 + u*x +1
f.is_irreducible()

True

gcd(f,f.derivative(x))

1

This is a verification that f is irreducible, separable. (b) For the given polynomial c 1 = σ 1 = 0 , c 2 = σ 2 = u + 1 , c 3 = σ 3 = u , c 4 = σ 4 = 1 . For D f ( y ) we have (cf. Ex.13.3.6,13.3.4 and (13.3),(13.32)):

A = D ( f ) + D ( f ) = σ 1 σ 2 σ 3 3 σ 1 2 σ 4 3 σ 3 2 + 4 σ 2 σ 4 = σ 3 2 = c 3 2 = u 2 ( mod 2 ) B = D ( f ) D ( f ) = c 2 3 c 3 2 + c 3 4 = ( u + 1 ) 3 u 2 + u 4 = u 5 + u 3 + u 2 ( mod 2 ) D f ( y ) = y 2 Ay + B = y 2 + u 2 y + u 5 + u 3 + u 2 a = σ 2 = c 2 = u + 1 , b = σ 1 σ 3 4 σ 4 = c 1 c 3 4 c 4 = 0 , c = σ 1 2 σ 4 + σ 3 2 4 σ 2 σ 4 = c 1 2 c 4 + c 3 2 4 c 2 c 4 = u 2 𝜃 f ( y ) = y 3 a y 2 + by c = y 3 + ( u + 1 ) y 2 + u 2 = ( y + u ) ( y 2 + y + u )

Sage verification:

    R.<x1,x2,x3,x4,y1,y2,y3,y4> = PolynomialRing(QQ, order = ’degrevlex’)
    elt = SymmetricFunctions(QQ).e()
    e = [elt([i]).expand(4).subs(x0=x1, x1=x2, x2=x3, x3 = x4) for i in range(5)]
    J = R.ideal(e[1]-y1, e[2]-y2, e[3]-y3,e[4]-y4)
    G = J.groebner_basis()
    D = x1^3*x2^2*x3;
    D=D+D.subs(x1=x3,x2=x4,x3=x1)+D.subs(x1=x2,x2=x1,x3=x4)
      +D.subs(x1=x4,x2=x3,x3=x2)
    D=D+D.subs(x1=x2,x2=x3,x3=x1)
      +D.subs(x1=x2,x2=x3,x3=x1).subs(x1=x2,x2=x3,x3=x1)
    d1=x1*x2+x3*x4;d2=d1.subs(x2=x3,x3=x2);d3=d1.subs(x1=x3,x3=x1);
    S1=d1+d2+d3; S2=d1*d2+d1*d3+d2*d3; S3=d1*d2*d3

    S.<c1,c2,c3,c4,u> = PolynomialRing(ZZ, order = ’degrevlex’)
    A=(D+D.subs(x1=x2,x2=x1)).reduce(G).subs(y1=c1,y2=c2,y3=c3,y4=c4)
    A=A.subs(c1=0,c2=u+1,c3=-u,c4=1).change_ring(GF(2));
    B=(D*D.subs(x1=x2,x2=x1)).reduce(G).subs(y1=c1,y2=c2,y3=c3,y4=c4)
    B=B.subs(c1=0,c2=u+1,c3=-u,c4=1).change_ring(GF(2));
    a=S1.reduce(G).subs(y1=c1, y2 = c2,y3=c3,y4=c4)
    a=a.subs(c1=0,c2=u+1,c3=-u,c4=1).change_ring(GF(2));
    b=S2.reduce(G).subs(y1=c1, y2 = c2,y3=c3,y4=c4)
    b=b.subs(c1=0,c2=u+1,c3=-u,c4=1).change_ring(GF(2));
    c=S3.reduce(G).subs(y1=c1, y2 = c2,y3=c3,y4=c4)
    c=c.subs(c1=0,c2=u+1,c3=-u,c4=1).change_ring(GF(2));
    show("A= ",A,",  B= ",B)
    show("a=",a,", b=",b,", c=",c)
    show((y^3+a*y^2+b*y+c).factor())

A = u 2 , B = u 5 + u 3 + u 2

a = u + 1 , b = 0 , c = u 2

( u + y ) ( y 2 + u + y )

(c) As per (b), D f ( y ) = y 2 + u 2 y + u 5 + u 3 + u 2 = ( y + u ) 2 + u 2 ( y + u ) + u 5 = u 4 ( Y 2 + Y + u ) , where Y = ( y + u ) u 2 .

Then the splitting field of D f ( y ) is F ( D ( f ) ) = 𝔽 2 ( u , α ) , where α 2 + α + u = 0 . Since u = α 2 + α , 𝔽 2 ( u , α ) = 𝔽 2 ( α ) and g ( y ) = y 2 + uy + 1 = y 2 + ( α 2 + α ) y + 1 . Then g ( y + 1 ) = ( y + 1 ) 2 + ( α 2 + α ) ( y + 1 ) + 1 = y 2 + ( α 2 + α ) y + ( α 2 + α ) is irreducible in 𝔽 2 [ α ] [ y ] (and in 𝔽 2 ( α ) [ y ] ) by the Schönemann-Eisenstein criterion. Therefore g ( y ) is irreducible over the splitting field 𝔽 2 ( α ) of D ( f )

This criterion applies here because [ 𝔽 2 ( α ) : 𝔽 2 ] = [ 𝔽 2 ( u , α ) : 𝔽 2 ] = [ 𝔽 2 ( u , α ) : 𝔽 2 ( u ) ] [ 𝔽 2 ( u ) : 𝔽 2 ] = ( u is a variable), therefore α is transcendental over 𝔽 2 , so that we may consider α as a variable x : 𝔽 2 [ α ] 𝔽 2 [ x ] . Hence 𝔽 2 [ α ] is a PID, and α is a prime in 𝔽 2 [ α ] . Gauss’s Lemma and the Schönemann-Eisenstein Criterion apply here.

As an alternative proof of the irreducibility of g ( y ) = y 2 + uy + 1 over F ( D ( f ) ) , without this criterion, it is sufficient to prove that g ( y ) has no root in F ( D ( f ) ) = 𝔽 2 ( α ) , where α 2 + α + u = 0 as above. Such a root is under the form a ( α ) b ( α ) , where a ( α ) and b ( α ) are relatively prime in the PID 𝔽 2 [ α ] . Then

a ( α ) 2 + ( α 2 + α ) a ( α ) b ( α ) + b 2 ( α ) = 0 ,

hence a ( α ) b 2 ( α ) , with a ( α ) , b ( α ) relatively prime, thus a ( α ) 1 , a ( α ) = 1 , and similarly b ( α ) = 1 . But g ( 1 ) = u 0 , so g has no root in F ( D ( f ) ) .

Thus y 2 + uy + 1 is irreducible over the splitting field of D f ( y ) , therefore G f D 8 by Proposition 13.3.6. □

Answers

User profile picture
2022-07-19 00:00
Comments