Homepage › Solution manuals › David A. Cox › Galois Theory › Exercise 13.4.1
Exercise 13.4.1
Verify the computations given in Example 13.4.1.
Proof.
The following Sage instructions:
- R.<y,x1,x2,x3,sigma1,sigma2,sigma3,u1,u2,u3> = PolynomialRing(QQ, order = ’lex’) elt = SymmetricFunctions(QQ).e() e = [elt([i]).expand(3).subs(x0=x1, x1=x2, x2=x3) for i in range(4)] J = R.ideal(e[1]-sigma1, e[2]-sigma2, e[3]-sigma3) G = J.groebner_basis() S = y-(u1*x1 + u2*x2 + u3*x3) S1 = S * S.subs(x1=x1,x2=x3,x3=x2) * S.subs(x1=x2,x2=x1,x3=x3) S1 = S1 * S.subs(x1=x2,x2=x3,x3=x1) * S.subs(x1=x3,x2=x1,x3=x2) S = S1 * S.subs(x1=x3,x2=x2,x3=x1) S = S.subs(u1=-1,u2=1,u3=2) f = S.reduce(G).polynomial(y) f
give output :
Using , we obtain:
f1 = f.subs(sigma_1=-1, sigma_2=-2, sigma_3=1); f1
The Sage output coincides with Example 13.4.1:
factor(f1)
□
Answers
2022-07-19 00:00