Exercise 13.4.2

Prove that the polynomial s u ( y ) defined in (13.41) lies in K [ u 1 , . . . , u n , y ] .

Proof.

Let f ( x ) = x n c 1 x n 1 + . . . + ( 1 ) n c n K [ x ] . The universal version of s u ( y ) is given by :

S ( y ) = σ S n ( y ( u 1 x σ ( 1 ) + . . . + u n x σ ( n ) ) ) K [ x 1 , . . . , x n , u 1 , . . . , u n , y ] For any τ S n , τ S ( y ) = σ S n ( y ( u 1 x ( τσ ) ( 1 ) + . . . + u n x ( τσ ) ( n ) ) ) = σ S n ( y ( u 1 x σ ( 1 ) + . . . + u n x σ ( n ) ) ) = S ( y ) . Thus the application of τ has merely permuted the roots of S ( y ) leaving the coefficients fixed. It means that the coefficients of S ( y ) are symmetric and are polynomials in σ 1 , . . . , σ n (cf. Ex.9.1.6), i.e., S ( y ) K [ σ 1 , . . . , σ n , u 1 , . . . , u n , y ] . The application of evaluation map σ i c i to S ( y ) gives s u ( y ) K [ c 1 , . . . , c n , u 1 , . . . , u n , y ] = K [ u 1 , . . . , u n , y ] . □

Answers

User profile picture
2022-07-19 00:00
Comments