Homepage › Solution manuals › David A. Cox › Galois Theory › Exercise 13.4.4
Exercise 13.4.4
Consider the polynomial when from Example 13.4.3.
- (a)
- Compute , and derive factorization given in Example 13.4.3.
- (b)
-
Let h be the first factor of
given in Example 13.4.3, multiplied by -1 so that it is monic in y. Using Sage, write h as a polynomial in y so that its coefficients are of the form
This should give the formula for h given in Example 13.4.3.
Proof.
- (a)
-
The following Sage instructions:
R.<y,x1,x2,x3,sigma1,sigma2,sigma3,u1,u2,u3> = PolynomialRing(QQ, order = ’lex’) elt = SymmetricFunctions(QQ).e() e = [elt([i]).expand(3).subs(x0=x1, x1=x2,x2=x3) for i in range(4)] J = R.ideal(e[1]-sigma1, e[2]-sigma2, e[3]-sigma3) G = J.groebner_basis() S = y - (u1*x1 + u2*x2 + u3*x3) S1 = S * S.subs(x1=x1,x2=x3,x3=x2) *S .subs(x1=x2,x2=x1,x3=x3) S1 = S1 * S.subs(x1=x2,x2=x3,x3=x1) * S.subs(x1=x3,x2=x1,x3=x2) S = S1 * S.subs(x1=x3,x2=x2,x3=x1) s = S.reduce(G).polynomial(y) sf = s.subs(sigma1=-1,sigma2=-2,sigma3=1) dec = sf.factor(); decgive the same output as in Example 13.4.3:
- (b)
-
The following Sage instruction:
h = (-1)* dec[1][0]; h
gives the second (it’s the good one) irreducible factor of , given in Example 13.4.3, multiplied by -1:
A second reduction doesn’t give quite the expected result
R.<y,u1,u2,u3,sigma1,sigma2,sigma3> = PolynomialRing(QQ, order = ’lex’) elt = SymmetricFunctions(QQ).e() e = [elt([i]).expand(3).subs(x0=u1, x1=u2,x2=u3) for i in range(4)] J = R.ideal(e[1]-sigma1, e[2]-sigma2, e[3]-sigma3) G = J.groebner_basis() g = R(h).reduce(G).polynomial(y); gBut this last instructions verify the formula of the text:
S.<u1,u2,u3>=ZZ[] A=S(h(0)) B = 7*sigma3 -sigma1^3 + 7*(u1*u2^2 + u1^2*u3 + u2*u3^2) B = B.subs(sigma1 = e[1],sigma2=e[2], sigma3=e[3]) B = S(B) A-BThis is a verification of
Answers