Exercise 13.4.4

Consider the polynomial s u ( y ) when f = x 3 + x 2 2 x 1 from Example 13.4.3.

(a)
Compute s u ( y ) [ u 1 , u 2 , u 3 , y ] , and derive factorization given in Example 13.4.3.
(b)
Let h be the first factor of s u ( y ) given in Example 13.4.3, multiplied by -1 so that it is monic in y. Using Sage, write h as a polynomial in y so that its coefficients are of the form a symmetric polynomial in u 1 , u 2 , u 3 + a remainder in u 1 , u 2 , u 3 .

This should give the formula for h given in Example 13.4.3.

Proof.

(a)
The following Sage instructions:
     R.<y,x1,x2,x3,sigma1,sigma2,sigma3,u1,u2,u3> = PolynomialRing(QQ, order = ’lex’)
     elt = SymmetricFunctions(QQ).e()
     e = [elt([i]).expand(3).subs(x0=x1, x1=x2,x2=x3) for i in range(4)]
     J = R.ideal(e[1]-sigma1, e[2]-sigma2, e[3]-sigma3)
     G = J.groebner_basis()
     S = y - (u1*x1 + u2*x2 + u3*x3)
     S1 = S * S.subs(x1=x1,x2=x3,x3=x2) *S .subs(x1=x2,x2=x1,x3=x3)
     S1 = S1 * S.subs(x1=x2,x2=x3,x3=x1) * S.subs(x1=x3,x2=x1,x3=x2)
     S = S1 * S.subs(x1=x3,x2=x2,x3=x1)
     s = S.reduce(G).polynomial(y)
     sf = s.subs(sigma1=-1,sigma2=-2,sigma3=1)
     dec = sf.factor(); dec

give the same output as in Example 13.4.3:

s u ( y ) = ( y 3 + ( u 1 u 2 u 3 ) y 2 + ( 2 u 1 2 3 u 1 u 2 + 2 u 2 2 3 u 1 u 3 3 u 2 u 3 + 2 u 3 2 ) y + u 1 3 4 u 1 2 u 2 + 3 u 1 u 2 2 + u 2 3 + 3 u 1 2 u 3 u 1 u 2 u 3 4 u 2 2 u 3 4 u 1 u 3 2 + 3 u 2 u 3 2 + u 3 3 ) ( y 3 + ( u 1 u 2 u 3 ) y 2 + ( 2 u 1 2 3 u 1 u 2 + 2 u 2 2 3 u 1 u 3 3 u 2 u 3 + 2 u 3 2 ) y + u 1 3 + 3 u 1 2 u 2 4 u 1 u 2 2 + u 2 3 4 u 1 2 u 3 u 1 u 2 u 3 + 3 u 2 2 u 3 + 3 u 1 u 3 2 4 u 2 u 3 2 + u 3 3 )
(b)
The following Sage instruction:
     h =  (-1)* dec[1][0]; h

gives the second (it’s the good one) irreducible factor h of s u ( y ) , given in Example 13.4.3, multiplied by -1:

h = y 3 + ( u 1 + u 2 + u 3 ) y 2 + ( 2 u 1 2 + 3 u 1 u 2 2 u 2 2 + 3 u 1 u 3 + 3 u 2 u 3 2 u 3 2 ) y u 1 3 3 u 1 2 u 2 + 4 u 1 u 2 2 u 2 3 + 4 u 1 2 u 3 + u 1 u 2 u 3 3 u 2 2 u 3 3 u 1 u 3 2 + 4 u 2 u 3 2 u 3 3

A second reduction doesn’t give quite the expected result

     R.<y,u1,u2,u3,sigma1,sigma2,sigma3> = PolynomialRing(QQ, order = ’lex’)
     elt = SymmetricFunctions(QQ).e()
     e = [elt([i]).expand(3).subs(x0=u1, x1=u2,x2=u3) for i in range(4)]
     J = R.ideal(e[1]-sigma1, e[2]-sigma2, e[3]-sigma3)
     G = J.groebner_basis()
     g = R(h).reduce(G).polynomial(y); g

y 3 + σ 1 y 2 + ( 2 σ 1 2 + 7 σ 2 ) y + 21 u 2 u 3 2 14 u 2 u 3 σ 1 7 u 3 2 σ 1 + 7 u 3 σ 1 2 σ 1 3 + 7 u 2 σ 2 7 u 3 σ 2 + 7 σ 3

But this last instructions verify the formula of the text:

     S.<u1,u2,u3>=ZZ[]
     A=S(h(0))
     B = 7*sigma3 -sigma1^3 + 7*(u1*u2^2  + u1^2*u3 + u2*u3^2)
     B = B.subs(sigma1 = e[1],sigma2=e[2], sigma3=e[3])
     B = S(B)
     A-B

0

This is a verification of

h = y 3 + ( u 1 + u 2 + u 3 ) y 2 + ( 7 ( u 1 u 2 + u 1 u 3 + u 2 u 3 ) 2 ( u 1 + u 2 + u 3 ) 2 ) y + 7 u 1 u 2 u 3 ( u 1 + u 2 + u 3 ) 3 + 7 ( u 1 u 2 2 + u 1 2 u 3 + u 2 u 3 2 ) .

Answers

User profile picture
2022-07-19 00:00
Comments