Exercise 13.4.5

Use the method of part (a) of Exercise 4 to derive the factorization of s u ( y ) given in Example 13.4.4.

Proof.

The following Sage instructions :

     
R.<y,x1,x2,x3,sigma1,sigma2,sigma3,u1,u2,u3> = PolynomialRing(QQ, order = ’lex’) elt = SymmetricFunctions(QQ).e() e = [elt([i]).expand(3).subs(x0=x1, x1=x2,x2=x3) for i in range(4)] J = R.ideal(e[1]-sigma1, e[2]-sigma2, e[3]-sigma3) G = J.groebner_basis() S = y - (u1*x1 + u2*x2 + u3*x3) S1 = S * S.subs(x1=x1,x2=x3,x3=x2) * S.subs(x1=x2,x2=x1,x3=x3) S1 = S1 * S.subs(x1=x2,x2=x3,x3=x1) * S.subs(x1=x3,x2=x1,x3=x2) S = S1 * S.subs(x1=x3,x2=x2,x3=x1) s = S.reduce(G).polynomial(y) sf = s.subs(sigma1=0,sigma2=0,sigma3=1) dec = sf.factor(); dec

give the same output as in Example 13.4.4:

s u ( y ) = ( y 2 + ( 2 u 1 + u 2 + u 3 ) y + u 1 2 u 1 u 2 + u 2 2 u 1 u 3 u 2 u 3 + u 3 2 ) ( y 2 + ( u 1 2 u 2 + u 3 ) y + u 1 2 u 1 u 2 + u 2 2 u 1 u 3 u 2 u 3 + u 3 2 ) ( y 2 + ( u 1 + u 2 2 u 3 ) y + u 1 2 u 1 u 2 + u 2 2 u 1 u 3 u 2 u 3 + u 3 2 )

Answers

User profile picture
2022-07-19 00:00
Comments