Homepage › Solution manuals › David A. Cox › Galois Theory › Exercise 14.2.1
Prove (14.7).
Proof. Given σ ′ = ( τ ′ ; μ 1 ′ , . . . , μ k ′ ) , σ = ( τ ; μ 1 , . . . , μ k ) ∈ A ≀ B . Since σ ′ maps R i to R τ ′ ( i ) via μ i ′ , if we set j = τ ′ ( i ) , then σ maps R j to R τ ( j ) = R τ ( τ ′ ( i ) ) = R τ τ ′ ( i ) via μ j = μ τ ′ ( i ) .
Hence σ σ ′ maps R i to R τ τ ′ ( i ) via μ τ ′ ( i ) μ i ′ .
More explicitly, by the definition of ( τ ; μ 1 , … , μ k ) , for all ( i , j ) ∈ { 1 , … , k } × { 1 , … , l } ,
Applying three times this definition, we obtain
Since this equality is true for all ( i , j ) ∈ { 1 , … , k } × { 1 , … , l } ,
□