Exercise 14.2.1

Prove (14.7).

Answers

Proof. Given σ = ( τ ; μ 1 , . . . , μ k ) , σ = ( τ ; μ 1 , . . . , μ k ) A B . Since σ maps R i to R τ ( i ) via μ i , if we set j = τ ( i ) , then σ maps R j to R τ ( j ) = R τ ( τ ( i ) ) = R τ τ ( i ) via μ j = μ τ ( i ) .

Hence σ σ maps R i to R τ τ ( i ) via μ τ ( i ) μ i .

More explicitly, by the definition of ( τ ; μ 1 , , μ k ) , for all ( i , j ) { 1 , , k } × { 1 , , l } ,

( τ ; μ 1 , , μ k ) ( i , j ) = ( τ ( i ) , μ i ( j ) ) .

Applying three times this definition, we obtain

( τ ; μ 1 , , μ k ) ( τ ; μ 1 , , μ k ) = ( τ ; μ 1 , , μ k ) ( τ ( i ) , μ i ( j ) ) = ( τ ( τ ( i ) ) , μ τ ( i ) ( μ i ( j ) ) = ( ( τ τ ) ( i ) , ( μ τ ( i ) μ i ) ( j ) = ( τ τ ; μ τ ( 1 ) μ 1 , . . . , μ τ ( k ) μ k ) ( i , j )

Since this equality is true for all ( i , j ) { 1 , , k } × { 1 , , l } ,

( τ ; μ 1 , . . . , μ k ) ( τ ; μ 1 , . . . , μ k ) = ( τ τ ; μ τ ( 1 ) μ 1 , . . . , μ τ ( k ) μ k ) .

User profile picture
2022-07-19 00:00
Comments