Exercise 14.2.6

Let A be a subgroup of S n , and let G be any group. Then define A G as in the Mathematical Notes.

(a)
Prove that A G is a group under the multiplication defined in the Mathematical Notes.
(b)
State and prove a version of part (b) of Lemma 14.2.8 for A G .
(c)
Prove that | A G | = | A | | G | n when G is finite.

Answers

Proof.

(a)
Let G be any group and let A S n be a permutation group. Then set A G = { ( τ ; g 1 , , g n ) | τ A , g 1 , , g n G } ,

with an operation on this set defined by

( τ ; g 1 , , g n ) ( τ ; g 1 , , g n ) = ( τ τ ; g τ ( 1 ) g 1 , , g τ ( n ) g n ) A G .

We write e the identity of G , and () the identity of S n .

Let λ = ( τ ; g 1 , , g n ) , λ = ( τ ; g 1 , , g n ) , λ = ( τ ; g 1 , , g n ) be elements of A G . Then λ ( λ λ ) = ( τ ; g 1 , , g n ) ( τ τ ; g τ ( 1 ) g 1 , , g τ ( n ) g n ) = ( τ τ τ ; g ( τ τ ) ( 1 ) g τ ( 1 ) g 1 , , g ( τ τ ) ( n ) g τ ( n ) g n ) ( λ λ ) λ = ( τ τ ; g τ ( 1 ) g 1 , , g τ ( n ) g n ) ( τ ; g 1 , , g n ) = ( τ τ ; h 1 , , h n ) ( τ ; g 1 , , g n ) ( where  h k = g τ ( k ) g k ) = ( τ τ τ ; h τ ( 1 ) g 1 , , h τ ( n ) g n ) = ( τ τ τ ; g τ ( τ ( 1 ) ) g τ ( 1 ) g 1 , , g τ ( τ ( n ) ) g τ ( n ) g n ) = ( τ τ τ ; g ( τ τ ) ( 1 ) g τ ( 1 ) g 1 , , g ( τ τ ) ( n ) g τ ( n ) g n )

thus λ ( λ λ ) = ( λ λ ) λ , and the law is associative.

Write 𝜀 = ( ( ) ; e , , e ) = ( ι ; e 1 , , e n ) , where ι = ( ) , and e k = e , k = 1 , , n . Then 𝜀λ = ( ι ; e 1 , , e n ) ( τ ; g 1 , , g n ) = ( τ ; e τ ( 1 ) g 1 , , e τ ( n ) g n ) = ( τ ; g 1 , , g n ) = λ ( since  e τ ( k ) = e ) λ𝜀 = ( τ ; g ι ( 1 ) e 1 , , g ι ( n ) e n ) = ( τ ; g 1 , , g n ) = λ ( since  ι ( k ) = k , e k = e ) .

Therefore 𝜀 = ( ( ) ; e , , e ) is the identity of A G .

Set μ = ( τ 1 ; h 1 , , h n ) = ( τ 1 ; g τ 1 ( 1 ) 1 , , g τ 1 ( n ) 1 ) , with h k = g τ 1 ( k ) 1 , k = 1 , , n . Then λμ = ( τ ; g 1 , , g n ) ( τ 1 ; h 1 , , h n ) = ( ( ) ; g τ 1 ( 1 ) h 1 , , g τ 1 ( n ) h n ) = ( ( ) ; g τ 1 ( 1 ) g τ 1 ( 1 ) 1 , , g τ 1 ( n ) g τ 1 ( n ) 1 ) = ( ( ) ; e , , e ) = 𝜀 μλ = ( τ 1 ; h 1 , , h n ) ( τ ; g 1 , , g n ) = ( ( ) ; h τ ( 1 ) g 1 , , h τ ( n ) g n = ( ( ) ; g τ 1 ( τ ( 1 ) ) 1 g 1 , , g τ 1 ( τ ( n ) ) 1 g n ) = ( ( ) ; g 1 1 g 1 , , g n 1 g n ) = ( ( ) ; e , , e ) = 𝜀 .

Therefore every element in A G is invertible.

A G is a group under the multiplication defined in the Mathematical Notes.

(b)
For the group A G of part (a), where A S n and G is a group, we show the following lemma:

Lemma. The map

φ { A G A ( τ ; g 1 , , g n ) τ

is a group homomorphism that is surjective and whose kernel is isomorphic to G n .

Let λ = ( τ ; g 1 , , g n ) , λ = ( τ ; g 1 , , g n ) be any elements of A G . By definition, λ λ = ( τ τ ; g τ ( 1 ) g 1 , , g τ ( n ) g n ) , so that

φ ( λ λ ) = τ τ = φ ( λ ) φ ( λ ) .

φ is a group homormphism.

If τ is any element of A , then φ ( τ ; e , , e ) = τ , where ( τ ; e , , e ) A G . Therefore φ is surjective.

Moreover ( τ ; g 1 , , g n ) ker φ if and only if τ = ( ) , therefore

ker φ = { ι ; g 1 , , g n ) | ( g 1 , , g n ) G n } , where  ι = ( ) .

Consider

ψ { ker φ G n ( ι ; g 1 , , g n ) ( g 1 , , g n )

Then ψ is bijective (with inverse map ( g 1 , , g n ) ( ι , g 1 , , g n ) ). We verify that ψ is a group homomorphism: if λ = ( ι ; g 1 , , g n ) , λ = ( ι ; g 1 , , g n ) are elements of ker φ , then

ψ ( λ λ ) = ψ ( ( ι ; g 1 , , g n ) ( ι ; g 1 , , g n ) ) = ψ ( ι ; g ι ( 1 ) g 1 , , g ι ( n ) g n ) = ψ ( ι ; g 1 g 1 , , g n g n ) ( since  ι ( k ) = k ) = ( g 1 g 1 , , g n g n ) = ( g 1 , g n ) ( g 1 , , g n ) = ψ ( λ ) ψ ( λ ) .

So ψ is an group isomorphism, and ker φ G n .

(c)
By part (b), since φ is a surjective homomorphism, ( A G ) ker φ A ,

and ker φ G n . Therefore

| A | = | A G | | ker φ | = | A G | | G | n ,

which proves

| A G | = | A | | G | n .

User profile picture
2022-07-19 00:00
Comments