Exercise 14.3.3

Consider the affine semilinear group AΓL ( n , 𝔽 q ) for q = p m .

(a)
Prove that AGL ( n , 𝔽 q ) is a normal subgroup of AΓL ( n , 𝔽 q ) of index m .
(b)
Prove that 𝔽 q n is a normal subgroup of AΓL ( n , 𝔽 q ) .
(c)
Prove that elements of AΓL ( n , 𝔽 q ) give maps 𝔽 q n 𝔽 q n that are affine linear over 𝔽 p .

Answers

We give some preliminary formulas.

Note that γ A , v = γ A , e , v , A GL ( n , 𝔽 q ) , v 𝔽 q , where e is the identity element of Gal ( F q m 𝔽 p ) , thus AGL ( n , 𝔽 q ) AΓL ( n , 𝔽 q ) .

For all u = ( α 1 , , α n ) 𝔽 q n , we write σ ( u ) = ( σ ( α 1 ) , , σ ( α n ) ) .

If A = ( a ij ) 1 i , j n GL ( n , 𝔽 q ) , then

σ ( A u ) = σ ( j = 1 n a 1 j α j , , j = i n a ij α j , , j = 1 n a nj α j ) = ( j = 1 n σ ( a 1 j ) σ ( α j ) , , j = i n σ ( a ij ) σ ( α j ) , , j = 1 n σ ( a nj ) σ ( α j ) ) = σ ( A ) σ ( u ) ,

where σ ( A ) = ( σ ( a ij ) ) 1 i , j n , and similarly

σ ( A u + v ) = σ ( A ) σ ( u ) + σ ( v ) .

Then, for all u 𝔽 q n ,

( γ A , σ , v γ B , τ , w ) ( u ) = ( ( u ) + w ) + v = ( B ) ( στ ) ( u ) + ( w ) + v = γ ( B ) , στ , ( w ) + v ( u ) ,

thus

γ A , σ , v γ B , τ , w = γ ( B ) , στ , ( w ) + v . (1)

For all u , s 𝔽 q n ,

s = γ A , σ , v ( u ) s = ( u ) + v σ ( u ) = A 1 ( s v ) u = σ 1 ( A 1 s A 1 v ) u = σ 1 ( A 1 ) σ 1 ( s ) σ 1 ( A 1 ) σ 1 ( v ) u = γ σ 1 ( A 1 ) , σ 1 , σ 1 ( A 1 ) σ 1 ( v ) ( s ) ,

thus

γ A , σ , v 1 = γ σ 1 ( A 1 ) , σ 1 , σ 1 ( A 1 ) σ 1 ( v ) . (2)

By (6) and (7), AΓL ( n , 𝔽 q ) is a subgroup of S ( 𝔽 q n ) . Moreover, if γ A , σ , v , γ B , τ , w AΓL ( n , 𝔽 q ) , then

γ A , σ , v = γ B , τ , w ( A , σ , v ) = ( B , τ , w ) . (3)

Indeed, if γ A , σ , v = γ B , τ , w , then for all u 𝔽 q n , ( u ) + v = ( u ) + w . With u = 0 , we obtain v = w . If we take u = e i = ( 0 , , 0 , 1 , 0 , , 0 ) , where ( e 1 , , e n ) is the standard base of 𝔽 q n , then σ ( e i ) = e i = τ ( e i ) , so that A e i = B e i , i = 1 , , n . This implies A = B , and σ ( u ) = τ ( u ) for all u 𝔽 q n . Therefore, with u = ( α , 0 , , 0 ) , α 𝔽 q , we obtain σ ( α ) = τ ( α ) , thus σ = τ .

Proof. (a) By (8),

φ { AΓL ( n , 𝔽 q ) Gal ( 𝔽 p m , 𝔽 p ) γ A , σ , v σ

is well defined. Moreover, by (6), if γ A , σ , v , γ B , τ , w AΓL ( n , 𝔽 q ) ,

φ ( γ A , σ , v γ B , τ , w ) = φ ( γ ( B ) , στ , ( w ) + v ) = στ = φ ( γ A , σ , v ) φ ( γ B , τ , w ) ,

thus φ is a group homomorphism. If σ is any element of Gal ( 𝔽 p n , 𝔽 p ) , then σ = φ ( γ I n , σ , 0 ) , thus φ is surjective. The kernel of φ is

ker φ = { γ A , e , v | A GL ( n , 𝔽 q ) , v 𝔽 q n } = { γ A , v | A GL ( n , 𝔽 q ) , v 𝔽 q n } = AGL ( n , 𝔽 q ) .

This shows that AGL ( n , 𝔽 q ) is a normal subgroup of AΓL ( n , 𝔽 q ) , and the first Isomorphism Theorem gives

AΓL ( n , 𝔽 q ) AGL ( n , 𝔽 q ) Gal ( 𝔽 p m , 𝔽 p ) .

Since Gal ( 𝔽 p m , 𝔽 p ) is a cyclic group of order m , AGL ( n , 𝔽 q ) is a normal subgroup of AΓL ( n , 𝔽 q ) of index m . (b) Here, 𝔽 q n is identified with the group of translations { γ I n , e , w | w 𝔽 q n } , and, using (6) and (7),

γ A , σ , v γ I n , e , w γ A , σ , v 1 = γ A , σ , v γ I n , e , w γ σ 1 ( A 1 ) , σ 1 , σ 1 ( A 1 ) σ 1 ( v ) = γ A , σ , v γ σ 1 ( A 1 ) , σ 1 , σ 1 ( A 1 ) σ 1 ( v ) + w = γ σ 1 ( A 1 ) , σ σ 1 , ( σ 1 ( A 1 ) σ 1 ( v ) + w ) + v = γ I n , e , ( w ) .

We have proved

γ A , σ , v γ I n , e , w γ A , σ , v 1 = γ I n , e , ( w ) 𝔽 q n , (4)

therefore 𝔽 q n is a normal subgroup of AΓL ( n , 𝔽 q ) . (c) 𝔽 q n , which is a vector space over 𝔽 q , is also a vector space over 𝔽 p , by restriction of the extern operation { 𝔽 q × 𝔽 q n 𝔽 q n ( λ , u ) λu to 𝔽 p × 𝔽 q n .

Let B = ( e 1 , , e m ) be a base of 𝔽 q over 𝔽 p . As 𝔽 p -vector spaces, 𝔽 q n and 𝔽 p nm are isomorphic, where an isomorphism φ is given by

φ { 𝔽 q n 𝔽 p nm ( α 1 , , α n ) ( x 1 1 , , x m 1 ; ; x 1 n , , x m n ) ,

where α i = j = 1 m x j i e j , i = 1 , , n . (this isomorphism depends of the choice of the base B ). This proves dim 𝔽 p 𝔽 q n = nm . Consider the two maps

ψ { 𝔽 q n 𝔽 q n u = ( α 1 , , α n ) σ ( u ) = ( σ ( α 1 ) , , σ ( α n ) ) , χ { 𝔽 q n 𝔽 q n v A v .

The automorphism σ Gal ( 𝔽 q 𝔽 p ) is 𝔽 q -linear: if λ 𝔽 p , α 𝔽 q , σ ( λα ) = σ ( λ ) σ ( α ) = λσ ( α ) . Thus ψ is 𝔽 p -linear. Moreover, χ is 𝔽 q -linear, a fortiori 𝔽 p -linear. Therefore, χ ψ = u A σ ( u ) is 𝔽 p -linear, so that

γ A , σ , v { 𝔽 q n 𝔽 q n u A σ ( u ) + v

is affine linear over 𝔽 p . □

User profile picture
2022-07-19 00:00
Comments