Exercise 14.4.20

Assume that g , h GL ( 2 , 𝔽 p ) satisfy gh = hg and det ( g ) = det ( h ) = 1 , as in part (a) of Proposition 14.4.4. Also assume that p > 2 .

(a)
Prove that the subgroup g , h GL ( 2 , 𝔽 p ) is isomorphic to the quaternion group Q = { ± 1 , ± i , ± j , ± k } , where i 2 = j 2 = k 2 = 1 , ij = ji = k , and 1 Z ( Q ) .
(b)
Prove that ( M 3 ) 0 is the normalizer of g , h in GL ( 2 , 𝔽 p ) .

Answers

Proof. (a) The given conditions on Q give the following Cayley’s table of the quaternion group:

× 1 1 i i j j k k 1 1 1 i i j j k k 1 1 1 i i j j k k i i i 1 1 k k j j i i i 1 1 k k j j j j j k k 1 1 i i j j j k k 1 1 i i k k k j j i i 1 1 k k k j j i i 1 1

Assume that g , h GL ( 2 , 𝔽 p ) satisfy gh = hg and det ( g ) = det ( h ) = 1 , as in part (a) of Proposition 14.4.4. ( p > 2 ). In the proof of this proposition, we have seen that

g 2 = I 2 , h 2 = I 2 .

Write l = gh . Then l 2 = ghgh = g 2 h 2 = I 2 . Moreover I 2 ( GL ( 2 , 𝔽 p ) ) . These properties give the table of G = { ± I 2 , ± g , ± h , ± k } :

× I 2 I 2 g g h h l l I 2 I 2 I 2 g g h h l l I 2 I 2 I 2 g g h h l l g g g I 2 I 2 k k h h g g g I 2 I 2 k k h h h h h l l I 2 I 2 g g h h h l l I 2 I 2 g g l l l h h g g I 2 I 2 l l l h h g g I 2 I 2

Thus G is stable for multiplication, and each element has an inverse. Therefore G is a subgroup of GL ( 2 , 𝔽 p ) . Moreover the two preceding tables show that the map ϕ : Q G defined by

ϕ ( 1 ) = I 2 , ϕ ( 1 ) = I 2 , ϕ ( i ) = g , ϕ ( i ) = g , ϕ ( j ) = h , ϕ ( j ) = h , ϕ ( k ) = l , ϕ ( k ) = l ,

is a group isomorphism.

Finally { g , h } G , and G is a group, therefore g , h G . Conversely, since I 2 = g 2 , l = gh , every element of G is generated by g , h . Therefore

g , h = G = { ± I 2 , ± g , ± h , ± k } ,

and

g , h Q .

Example with Sage:

F = GF(5)
A = matrix(F,2,[0,-1,1,0])
B = matrix(F,2,[2,0,0,-2])
gens = [A,B]
gens

[ ( 0 4 1 0 ) , ( 2 0 0 3 ) ]

G = MatrixGroup(gens)
G.list()

( ( 0 1 4 0 ) , ( 0 2 2 0 ) , ( 0 4 1 0 ) , ( 0 3 3 0 ) , ( 1 0 0 1 ) , ( 2 0 0 3 ) , ( 4 0 0 4 ) , ( 3 0 0 2 ) )

G.structure_description()

Q8

(b) Let π : { GL ( 2 , 𝔽 p ) PGL ( 2 , 𝔽 p ) 1 [ A ] .

By definition, ( M 3 ) 0 = π 1 ( N ( H ) ) , where we identified A GL ( 2 , 𝔽 p ) with γ A , 0 AGL ( 2 , 𝔽 p ) . Therefore, for all A GL ( 2 , 𝔽 p ) ,

A ( M 3 ) 0 [ A ] N ( H ) = N ( [ g ] , [ h ] ) { [ A ] [ g ] [ A ] 1 [ g ] , [ h ] , [ A ] [ h ] [ A ] 1 [ g ] , [ h ] .

Note that, if [ f ] [ g ] , [ h ] = { [ I 2 ] , [ g ] , [ h ] , [ gh ] } , where we can take f SL ( 2 , 𝔽 p ) (since I 2 , g , h , gh SL ( 2 , 𝔽 p ) ),

[ A ] [ g ] [ A ] 1 = [ f ] = [ Ag A 1 ] = [ f ] Ag A 1 = λf , λ 𝔽 p .

In this case, since det ( g ) = det ( h ) = det ( f ) = 1 ,

1 = det ( Ag A 1 ) = det ( λf ) = λ 2 ,

thus λ = ± 1 , and g = ± f . Therefore

[ A ] [ g ] [ A ] 1 [ g ] , [ h ] [ A ] [ g ] [ A 1 ] = [ f ] , [ f ] [ g ] , [ h ] Ag A 1 = ± f , f g , h Ag A 1 g , h ,

We have the same result with [ A ] h [ A ] 1 , therefore, for all A GL ( 2 , 𝔽 p ) ,

A ( M 3 ) 0 { Ag A 1 g , h Ah A 1 g , h A N GL ( 2 , 𝔽 p ) ( g , h )

This equivalence proves that

( M 3 ) 0 = N GL ( 2 , 𝔽 p ) ( g , h ) .

User profile picture
2022-07-19 00:00
Comments