Exercise 15.1.5

Shows that (15.7) reduces to ( x 2 + y 2 ) 2 = x 2 y 2 when a = b = 1 2 .

Answers

Proof. If we take a = b = 1 2 in the formula of the ovals of Cassini

( ( x a ) 2 + y 2 ) ( ( x + a ) 2 + y 2 ) = b 4 ,

we obtain

1 4 = [ ( x 1 2 ) 2 + y 2 ] [ ( x + 1 2 ) 2 + y 2 ] = ( x 2 + y 2 + 1 2 2 x ) ( x 2 + y 2 + 1 2 + 2 x ) = ( ( x 2 + y 2 + 1 2 ) 2 2 x 2 = ( x 2 + y 2 ) 2 + ( x 2 + y 2 ) 2 x 2 = ( x 2 + y 2 ) 2 + y 2 x 2 + 1 4 .

Therefore, for a = b = 1 2 , the equation ( ( x a ) 2 + y 2 ) ( ( x + a ) 2 + y 2 ) = b 4 reduces to

( x 2 + y 2 ) 2 = x 2 y 2 ,

which is the equation of the Lemniscate. □

User profile picture
2022-07-19 00:00
Comments