Exercise 15.2.11

Use sin ( x + y ) = sin x cos y + sin y cos x to show that if α , β [ 0 , 1 ] , then

0 α 1 1 t 2 d t + 0 β 1 1 t 2 d t = 0 γ 1 1 t 2 d t ,

where γ is the real number defined by

γ = α 1 β 2 + β 1 α 2 .

Note the similarity to (15.10).

Answers

Proof. If α , β [ 0 , 1 ] , then there are unique x , y [ 0 , π 2 ] such that α = sin x , β = sin y . Then x = arcsin ( α ) , y = arcsin ( β ) ) , where arcsin is the reciprocal function of f , f being the restriction of sin to [ 0 , π ] . For every t ] 1 , 1 [ , f is differentiable at f 1 ( t ) ] 0 , π [ , and f ( f 1 ( t ) 0 , thus f 1 = arcsin : [ 1 , 1 ] [ 0 , π ] is differentiable on ] 1 , 1 [ , and for all t ] 1 , 1 [ ,

arcsin ( t ) = ( f 1 ) ( t ) = 1 f ( f 1 ( t ) ) = 1 cos ( arcsin ( t ) ) = 1 1 sin 2 ( arcsin ( t ) ) = 1 1 t 2 .

Since t 1 1 t 2 is continuous on ] 1 , 1 [ , for all x ] 1 , 1 [ ,

arcsin ( x ) = 0 x 1 1 t 2 d t .

(This equality remains true for x = ± 1 :

0 1 1 1 t 2 d t is convergent, and 0 1 1 1 t 2 d t = lim x 1 0 x 1 1 t 2 d t , with value arcsin ( 1 ) = π 2 ).

Therefore, for all 𝜃 [ 0 , π ] , and for all z [ 1 , 1 ] ,

z = sin 𝜃 𝜃 = arcsin ( z ) 𝜃 = 0 z 1 1 t 2 d t .

(Alternatively, we can take this equivalence as a definition of sin 𝜃 , to continue Exercise 4.)

Write γ = sin ( x + y ) . Since 0 x + y π , we obtain x + y = arcsin ( γ ) , that is

0 α 1 1 t 2 d t + 0 β 1 1 t 2 d t = 0 γ 1 1 t 2 d t .

Moreover, since x , y [ 0 , π 2 ] , cos x 0 , cos y 0 , thus

cos x = 1 sin 2 x , cos y = 1 sin 2 y ,

and

γ = sin ( x + y ) = sin x cos y + sin y cos x = sin x 1 sin 2 y + sin y 1 sin 2 x = α 1 β 2 + β 1 α 2 .
User profile picture
2022-07-19 00:00
Comments