Exercise 15.2.4

Suppose that we define sin ( x ) by y = sin ( x ) x = 0 y ( 1 t 2 ) 1 2 d t . Then define cos ( x ) to be si n ( x ) . Use the method of Proposition 15.2.1 to prove the standard trigonometric identity cos 2 ( x ) = 1 sin 2 ( x ) .

Answers

Proof. We obtain the analog of (15.9) as in Exercise 1: for all x ,

sin ( x ) = sin ( x ) , sin ( π x ) = sin ( x ) .

Now we use the definition of sin : for all y [ 1 , 1 ] , for all x [ π 2 , π 2 ] ,

y = sin ( x ) x = 0 y ( 1 t 2 ) 1 2 d t ,

where 0 1 ( 1 t 2 ) 1 2 d t and 0 1 ( 1 t 2 ) 1 2 d t converge.

If x [ 0 , π 2 [ , differentiating each side of

s = 0 sin ( x ) 1 1 t 2 d t ,

we obtain

1 = 1 1 sin 2 ( x ) sin ( x ) .

If x = π 2 , then sin ( x ) = 1 , sin ( x ) = 0 , thus sin 2 ( x ) = 1 sin 2 ( x ) . Therefore

cos ( x ) = sin ( x ) = 1 sin 2 ( x ) , 0 x π 2 .

We extend the equality sin 2 ( x ) + cos 2 ( x ) = 1 to all x as in Exercise 2. □

User profile picture
2022-07-19 00:00
Comments